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ABSTRACT
We study character-based language models in the state-of-
the-art speech recognition framework. This approach has
advantages over both word-based systems and so-called end-
to-end ASR systems that do not have separate acoustic and
language models. We describe the necessary modifications
needed to build an effective character-based ASR system us-
ing the Kaldi toolkit and evaluate the models based on words,
statistical morphs, and characters for both Finnish and Ara-
bic. The morph-based models yield the best recognition re-
sults for both well-resourced and lower-resourced tasks, but
the character-based models are close to their performance in
the lower-resource tasks, outperforming the word-based mod-
els. Character-based models are especially good at predicting
novel word forms that were not seen in the training data. Us-
ing character-based neural network language models is both
computationally efficient and provides a larger gain compared
to the morph and word-based systems.

Index Terms— speech recognition, subword-based lan-
guage modeling, neural network language models, low re-
source, unlimited vocabulary

1. INTRODUCTION

The lexicon and language models for large-vocabulary con-
tinuous speech recognition (LVCSR) systems for western lan-
guages are still typically built using words as the basic units.
However, a lot of research has been published on alternative
subword units such as morphemes or data-driven segments [1].
For agglutinative languages such as Finnish these subword
models provide the state-of-the-art in LVCSR [2, 3].

Recently, end-to-end speech recognition systems have been
created that use the smallest unit of written language; single
graphemes [4, 5]. These systems have been built in such a
fashion that the borders between acoustic and language models
disappear, and that the whole system can be trained using a
single dataset. A lot of techniques introduced in the end-
to-end speech recognition systems have created insights for
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making conventional speech recognition systems even better.
For example, a state-of-the-art toolkit such as Kaldi [6] uses
frame subsampling and sequence-based training which are
directly inspired by end-to-end systems.

To our knowledge, there has been no work published on
using only characters as units in a conventional speech recog-
nition system for languages with phonemic orthography. In
this work, we implement a character-based speech recognizer
in a conventional state-of-the-art speech recognition frame-
work. We applied the proposed character-based approach in
the Arabic MGB-3 challenge [7], where our system was the
winning entry with the lowest word error rate. In this paper,
we explore the character-based models also for Finnish, as
well as for more low-resourced scenarios, where the approach
has the greatest advantages. We also explore in more detail the
performance and the properties of character-based systems.

Section 2 gives a background on earlier subword-based
systems. In Section 3 the prerequisites and implementation
details of our system are described. Sections 4, 5, and 6
analyze our system in general ASR performance, the ability to
predict unseen words, and a comparison of word, subword and
character models in regard of system requirements for each
part of the speech recognition pipeline.

2. SUBWORD LANGUAGE MODELING

The modeling of the vocabulary in LVCSR systems has been
an active research topic for a long time [8]. Whereas for lan-
guages like English it is possible to get a reasonable coverage
of a language by taking e.g. the most frequent 100,000 words,
for other languages millions of words would be needed to
cover a similar part. The first effective LVCSR systems often
had vocabularies ranging from 1,000 to 20,000 word types
[9], because obtaining improvements via larger vocabularies
were beyond the computers’ memory and decoding capacity
at the time. However, in highly inflectional or agglutinative
languages the amount of commonly used word forms can be
much higher, which led to the search of alternative models for
improving the coverage of the language. Multiple techniques
were developed such as class-based language models [10] and
the use of subword units [1] or mixture of word and subword
units [11].

Subword models are created by splitting the words in a



systematic manner. This can be either linguistically inspired,
such as stemming or morphological segmentation, or data-
driven. Using linguistics requires expert knowledge to create
the segmentation; the data-driven way often requires parameter
tuning to control the size of the subword vocabulary.

The subword models have multiple pros and cons.
Whereas in the past a smaller vocabulary size was important
for the whole LVCSR system to run, it is now beneficial for the
state-of-the-art Neural Network Language Models (NNLMs).
Since the input and output layer dimensions depend on the
vocabulary size, very large vocabularies are unpractical. Al-
though the layers can be reduced by shortlists and class-based
models [12, 13], or computations approximated by methods
like hierarchical softmax [14], the subword models provide a
natural and effective way to lower the dimensionality.

Besides having a smaller vocabulary size, the subword
models also increase the coverage of the language. A properly
chosen set of subword units can model any words in a language
by concatenating the units. In practice, this means that there
will be no out-of-vocabulary (OOV) words and that language
models can effectively adapt to texts with previously unseen
words. This can be important, because even if all the words
in the training corpus could be taken in the vocabulary, many
of them appear only once or twice in the data. This sparsity
causes poor probability estimates, and especially the n-gram
models will often have to back-off to unigram probabilities.
The sparsity and the vocabulary coverage problems only get
worse when the language and in-domain resources are more
limited. A subword vocabulary is better covered in the data
and has much more training samples per vocabulary item.

A drawback of subword models is the need for a long se-
quence of units to cover word and sentence context. This is
particularly problematic for models, such as n-gram or feed-
forward NNLMs, that predict words given a fixed window
of units for history. For n-gram models this drawback can
be alleviated by using techniques such as variable-order mod-
els [15, 16, 17]. For the state-of-the-art Recurrent NNLMs,
modeling long sequences is even less problematic, because
the model takes the complete context into account using the
recurrent connections.

There has been also a lot of research on the use of ‘hybrid
models’, which contain a mixture of both subword and word
units [11, 18, 19]. These models can model the selected long
words accurately and still cover the left over OOVs, but are
structurally more complex for the LVCSR system.

2.1. Subwords to the extreme: Characters

Having a long experience on subword modeling challenged
us to explore the extreme case of building a state-of-the-art
LVCSR system using only single characters as language mod-
eling units. There would be no need to train and tune a subword
segmentation algorithm or use expert knowledge to generate
a morphological analyzer. The resulting model would have

by definition a full coverage of the vocabulary, as long as
words are written in the same alphabet. For NNLMs, the di-
mensions of character input and output layers would be very
small, giving room for experimenting with specific network
architectures without the burden of high-dimensional input and
output. Furthermore, it may become possible to train robust
and successful models using even smaller amounts of data than
for longer subword units, which is important for low-resource
languages.

There have been interesting developments in the creation
of ‘end-to-end’ speech recognition systems [5, 20] that create
joint audio and language models, often working with the char-
acter as basic unit. In contrast to these systems, we explore the
use of characters in a ‘conventional’ state-of-the-art LVCSR
system. Exploring how character units work in conventional
speech recognition systems will also give insight into the use
of character units in the ‘end-to-end’ systems. The conven-
tional systems have the advantage that language models can
be separately trained and adapted to different domains without
having transcribed acoustic data. This is particularly important
when creating speech recognizers for domains or languages
where little transcribed speech is available.

Character language models have been used as well in other
fields of language technology, such as in machine translation
[21, 22].

3. CHARACTER-MODEL IMPLEMENTATION

When modifying the LVCSR system to utilize character-based
units, a number of changes in the implementation are needed
to make the models and the recognition process efficient and
allow the system to reconstruct words from the recognized
character sequence. Most of these changes are analogous to
the changes that are needed for implementing longer subwords,
so we have built the system by modifying the techniques de-
scribed in [3].

For acoustic model training no changes are needed. They
can be trained in a regular way on a sequence of phonemes
provided by the word-based transcripts. The units utilized in
the decoding are not influenced by training process, as the
training lexicon can be completely separate from the recogni-
tion lexicon. An important part of acoustic modeling is that the
character-based models require a grapheme-based phoneset.
This is usually not a problem for highly phonemic scripts, be-
cause the acoustic models with a grapheme-based lexicon can
easily learn the small phonemic changes and variations using
the immediate grapheme context. However, for a language
such as English that is far from phonemic, this does pose an
obstacle that requires further research.

For language model training the original training corpus
is split into characters instead of words. In order to be able to
reconstruct the word boundaries from the character sequences
later, different marking schemes can be used for the characters.
The most straightforward solution is to mark the word bound-



aries by adding a separate word boundary token. However,
to avoid adding extra tokens, it is also possible to mark the
grapheme at the begin or end of the word, or both. After split-
ting the words into characters and adding the word markers,
the language models can be trained in the usual way. In this
work we try all these four different marking styles, as previ-
ous research has shown that the selection of the best one is
dependent on the data.

For n-gram models, special techniques are needed to create
a character model that would be as accurate as a word or morph
model trained on the same corpus. Often the order of a word n-
gram model is restricted to a relatively low number, e.g. four or
five. However, the shorter units we use, the higher order of n-
gram model is required. For example, to be equivalent with a 4-
gram word model in Finnish, a character model would need to
contain contexts of order 20 or higher. To effectively train high-
order n-gram models we use the VariKN toolkit [17], which
can grow and prune variable-order Kneser-Ney smoothed n-
gram models. This tool has been effective for various subword
models in the past [16], and we show that it can successfully
train high-order character n-gram models as well. The training
of the character language model is computationally heavier
than a word or morph model, which can be seen from the
analyses given in Section 6.

Recurrent Neural Network Language Models (RNNLMs)
have clearly dominated in performance over n-gram -based
language models in the past years [23, 24]. As these mod-
els are specialized in capturing longer contexts, there is no
specific modifications needed to work with character-based
models, except to increase the maximum length of history that
is considered during training. A significant advantage in the
character models is the low dimensionality of the input and
output layer. As the vocabulary of a character model is very
small, a normal softmax output normalization can be used.

To combine the acoustic model, the language model and
the grapheme lexicon containing only single characters into an
efficient decoding graph, we use the modifications described
in [3] to restrict the lexicon to give only legal sequences of
tokens. For example, when word boundary markers are used,
they have to appear at both the beginning and end of a sen-
tences, and when word-continuation characters (so-called left-
marked, +m) are used, the first character in a sentence has to
be restricted to an unmarked character.

After decoding, there are two ways to reconstruct the word
sequence from a character sequence. The first is to take the
generated hypothesis string and apply string operations to
reverse the marking scheme that was used in the language
model training. The second is to transform the character-based
lattice into a word lattice. This is especially useful when word-
level post-processing, such as the system combination with a
word model, is performed afterwards. For creating the word
lattice, we use the following procedure: First, we identify
all nodes in a lattice that indicate word boundaries. After
that, for each word boundary node, we list all paths from the

node until the next word-boundary node is found. These paths
describe all words that can be generated by the lattice. For
the transformation, a finite-state transducer that maps each
sequence of character to its corresponding word is created and
applied to the lattice.

4. SPEECH RECOGNITION EXPERIMENTS

To evaluate the speech recognition performance of character-
based models we run a set of experiments for two languages:
Finnish and Arabic. Finnish is a morphologically rich and
agglutinative language that requires a very large vocabulary
due to inflections, derivations, and compounding. In LVCSR
there is a long history of using statistically created subword
models to reduce the vocabulary size [1]. Arabic is also mor-
phologically rich, but not an agglutinative language. In the
past morpheme-based models have been used successfully for
Arabic [25, 26, 27]. Besides comparing character and word
models, we also create optimized subword models using the
Morfessor toolkit [28, 29] and report those results as well.
Furthermore, to simulate an under-resourced situation we also
perform all experiments with models trained on only 10% of
the available language modeling data.

4.1. Datasets

For Finnish we used three different corpora for acoustic model
training. The Speecon corpus [30] consists of recorded speech
under multiple conditions with multiple microphones, of which
we used the lapel microphone. The Speechdat corpus contains
read speech over a low-quality phone transmission [31]. Lastly
the Parliament corpus contains speech by members of parlia-
ment during its sessions [32]. In total more than 1500 hours of
data was used for acoustic model training. As test data we used
a set of broadcast news from the Finnish national broadcaster
(Yle). This test dataset has 5 hours of speech and 35k words.
The same set of training corpora and test data was used in
previous work [32].

For Arabic acoustic models we used the training corpus of
the MGB-2 challenge [33], which consists of 1,200 hours of
broadcast data from multiple genres and even dialects. As test
data we used the MGB-2 dev-set, which has 8 hours of data
and 57k words.

For language modeling in Finnish we used a corpus of
newspaper texts from the Finnish Text Collection [34]. This
corpus contains 160 million tokens, with 4.3 million unique
words. Similarly, for Arabic we used a corpus of 130 million
tokens crawled from the Al Jazeera website, which contains
1.4 million unique words. After reducing 90% of both corpora,
the Finnish corpus had 1.3 million word types left and the
Arabic corpus 380k word types.



4.2. Setup

The acoustic models were trained using the Kaldi toolkit [6]
and have a bidirectional long short-term memory architecture
combined with regular time-delay neural network layers, all
trained with lattice-free MMI [35].

As explained in Section 3, we trained word, morph, and
character n-gram models with the VariKN toolkit [17]. For
first-pass recognition we created models that have approxi-
mately 5–8 million n-gram contexts. For lattice rescoring we
created much larger models by tuning the growing and pruning
parameters. We stopped training when the models did not in-
crease in size anymore or needed more than 100GB of memory.
The morph segmentations were created using the Morfessor
toolkit [28, 29]. We trained a few models with different morph
vocabulary sizes and selected the best using speech recognition
error rate on the development set. For Arabic this resulted in a
vocabulary of 17k morphs; in Finnish the selected vocabulary
had 30k morphs.

Besides n-gram models we also trained RNNLMs using
the TheanoLM toolkit [36]. For all models we used the same
basic architecture of a projection layer, an LSTM layer, and a
highway layer.

For the Finnish models trained on the full datasets, we
used 200 neurons in the projection layer and 1000 neurons in
both the LSTM and highway layers. The models trained on
only 10% of the data used less neurons, only 400 neurons for
both the LSTM and highway layers.

The large Arabic models were already trained for our
MGB-3 submission [37]. These models are not completely the
same for all types of units, and we did not have enough com-
puting time to make the models equivalent. The word models
have larger hidden layers, possibly giving them an advantage
over character models and the other subword models. The
subword models have 200 neurons in the projection layers and
1000 in the other layers. The hidden layers in the word models
are larger, 300 neurons in the projection and 1500 neurons in
the LSTM and highway layer. For the models trained on 10%
of the language modeling data, we used equal parameters for
all units, with 50 neurons in the projection layer and 300 in
the hidden layers.

In RNNLMs the computational complexity in the output
layer depends on the number of words in the vocabulary. For
over 10k word and subword vocabularies, we used classes to
reduce the size of the output layer. The words and subwords
were grouped into classes using the exchange word clustering
algorithm [38, 39]. We used 2000 classes in all word and
subword experiments reported here.

During training we used the adaptive gradient (Adagrad)
algorithm to update the parameters of RNNLMs. The parame-
ters of the model were updated after processing a mini-batch
of training examples. The mini-batch size for character and
subword models was 64 and for words 32 sequences. The
maximum sequence length depended on the task: 100 for char-

acters, 50 for subwords, and 25 for words. We used an initial
learning rate of 0.1 in all experiments. A dropout of 0.2 was
used to regularize the parameter learning.

For rescoring we implemented a version of TheanoLM
to rescore lattices in the Kaldi format. The different pruning
parameters during decoding—beam, recombination order, and
the maximum number of tokens per node—were optimized
to keep reasonable computation times and follow the memory
limits on our computing cluster.

4.3. Results

Table 1a shows the speech recognition results for the Finnish
broadcast news set. The results show that the sub-30k model
has the lowest word error rate for all the scenarios. In the
n-gram results we see that the word model outperforms the
character-based model for the full dataset, while for the under-
resourced scenario the character-based model improves over
the word model by 6%. Comparing the RNNLM results we
see that character-based models outperform the word models
in both scenarios.

In general the +m+ style markers work best for Finnish,
both for the sub-30k and the character model. This is in line
with the results in [3].

The results for Arabic in Table 1b show a similar pattern
as the Finnish results. The RNNLM-rescored results show that
character-based models outperform word models but under-
perform the sub-17k model. For the 10%-data scenario the
difference between word and character-based models is the
largest, which confirms the hypothesis that character models
have a greater benefit in under-resourced scenarios.

Different marking styles are optimal for Arabic than for
Finnish. It is unclear what causes the differences between the
markers, and the different optima between languages; we plan
to investigate this in future work.

5. PREDICTING UNSEEN WORDS

One of the strengths of subword models is the ability to predict
a larger vocabulary of words than any word vocabulary can do.
The character models can predict any word and other character
sequence, as long as the alphabet matches. To demonstrate
how this works in practice, we set up the following experiment
to check the number of out-of-corpus (OOC) words that our
model predicts correctly. Note that we do not speak of out-of-
vocabulary words as the character models have an unlimited
vocabulary.

For all words in our test set transcriptions that do not appear
in the language model training corpus we look if they appear
in the recognized transcription. We use the best transcription
after RNNLM rescoring, the same as what was generated in
Section 4. For both the character and subword model we use
the marking style that performed best in the ASR experiment.



Table 1: Word Error Rates for ASR experiments. Language models are trained on either the full or 10% of the data. <w> is
the tagging of word-boundaries with a separate symbol. +m and m+ are the techniques of marking on the left or right of each
subword when there is no word-boundary. +m+ marks this, redundantly, on both sides of the subword.

(a) Finnish

full 10 %
n-gram RNNLM n-gram RNNLM

word 16.70 15.04 19.63 18.29

sub-30k

+m+ 15.77 14.03 17.47 15.96
+m 16.39 14.29 18.60 16.17
m+ 16.26 14.21 18.56 16.40
<w> 15.95 14.28 17.91 16.57

char

+m+ 16.93 14.52 18.50 17.53
+m 16.97 14.69 18.94 17.54
m+ 17.11 14.62 19.22 17.79
<w> 17.34 14.56 19.09 17.59

(b) Arabic

full 10 %
n-gram RNNLM n-gram RNNLM

word 17.66 16.51 19.36 18.45

sub-17k

+m+ 17.15 16.19 18.43 17.34
+m 17.40 16.34 18.71 17.47
m+ 17.15 16.02 18.17 17.24
<w> 17.24 16.29 18.38 17.56

char

+m+ 18.08 16.90 19.05 18.23
+m 18.27 16.89 19.12 18.32
m+ 18.26 16.68 19.26 18.28
<w> 17.81 16.44 18.89 17.88

Table 2: The out-of-corpus (OOC) rate for the different dataset
and language modeling corpora and proportion of OOCs that
were actually recognized correctly by the char, sub-xxk and
word models.

model OOC char sub-xxk word

Finnish full 2.3% 40.9% 37.2% 0%
Finnish 10% 4.7% 47.3% 45.7% 0%

Arabic full 2.0% 16.3% 17.5% 0%
Arabic 10% 3.5% 31.7% 30.4% 0%

Table 2 shows the percentage of words that were correctly
present in the transcription even though they did not appear in
the training corpus. Naturally, the word model never predicts
any OOC word as it is unable to model words not seen in the
training corpus. Both the morph and the character models
were able to predict OOC words. In Finnish there is a clear
gap between character and sub-30k models, character models
recognizing 3.5% more OOC words using the reduced LM
corpus and 10% more using the model trained on the full LM
corpus. In Arabic the character model performs 7% worse
using the full training data and 4% better using the reduced
corpus when compared to the sub-17k model.

For many applications, such as keyword spotting, it is not
necessary that words are present in the 1-best transcription,
but that they are present as likely transcriptions in the search
network (lattice). Also, presence of words in the top part of
the search network indicate an opportunity for optimization of
the language model so that these words would be recognized
correctly. Figure 1 shows the proportion of OOC-words in the
transcription that are present in the (RNNLM rescored) lattice
for Finnish and Arabic.

For Finnish the figure shows that character models have
a clear benefit over Morfessor-based subword models. The
proportion of recognized OOCs is always larger than for the
sub-30k model, and the OOC proportion for sub-30k does not
increase anymore beyond beam 8. In Arabic the number of
recognized OOCs for the full language model data shows an
almost identical pattern for both the character and the sub-17k
segmentation. The sub-17k subword and character models
work equivalently in this scenario. When using the 10% cor-
pus the characters are clearly superior, indicating superior
modeling performance in under-resourced scenarios.

6. COMPUTATIONAL REQUIREMENTS OF THE
CHARACTER MODEL

As mentioned in Section 3 the computational requirements of
processing character and word models are different. We expect
character n-gram modeling to be more expensive, because of
the very long contexts, and character RNNLM modeling to be
cheaper than word modeling, because of the reduced input and
output layer sizes.

Table 3 shows the time and memory requirements for the
most important steps of the speech recognition training and
decoding process. The first part shows the training steps. As
expected the largest differences are in the training of the n-
gram and RNNLM models. Looking at the small n-gram
model training, the memory usage is about 2.5x higher for
the character model than for the word model. For training
larger n-grams, the difference is smaller. We must note that all
models were variable-order models, which is rather memory
consuming. This is a necessity for subword models but rather
unusual for word models.

In the RNNLM training we see a remarkable difference
between words and characters. Whereas for the word model
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Fig. 1: Proportion of OOC-words present in beam-pruned lattice.

Table 3: Time and memory usage for the training and decoding
of the Finnish datasets (full)

Phase char word
time mem. time mem.

n-gram training small 3h 11G 1h 4G
n-gram training 19h 90G 16h 70G
RNNLM training 48h 28M 116h 2G
L.fst creation <1s <2G 4m <2G
G.fst creation 40s <2G 40s 12G
HCLG combination 2:30m 2.5G 3:50m 3.6G

Decoding 7h 0.6 G 11h 1.3G
Rescoring n-gram 17m 1.8G 13m 1.7G
Rescoring RNNLM 7h 5G 8h 15G

2GB of GPU memory is required, the character model only
needs 28MB. Also the number of hours per epoch is much
lower and we noticed a faster convergence.

To our surprise, even normal n-gram decoding is much
more efficient for characters than for words, even though the
resulting lattices are larger. Most likely the decoding FST is
more efficient in the character case. Rescoring with n-grams is
a bit more expensive for characters, but RNNLM rescoring is
again a bit faster. The largest gain there is the memory usage.
The reason for similar decoding times is that for character
models, the lattices contain more nodes to search through.

The numbers for subword models (not shown) are in be-
tween of word and character training.

7. CONCLUSION

We have implemented and evaluated character-based modeling
in a state-of-the-art speech recognition systems for Finnish
and Arabic. This system outperforms word-based modeling
in most scenarios and is clearly better in under-resourced sce-
narios. Compared to modeling based on statistical morphs, we
did not see direct improvement in recognition performance.
Furthermore, we have evaluated how the character models
predict words that have not been seen in the training data and
observed a clear improvement over other subword and word
models. When looking at the computational requirements of
different models we conclude that character models can give
real speed benefits compared to word models, especially in
RNNLM training where much lower amount of memory and
time per epoch is required.

Overall, the character models can provide benefits com-
pared to word models. Besides the possible improvements in
accuracy, the RNNLM can be trained in a much more efficient
manner, and the overall system resources requirement is lower
than for word-based models.

Although we have not experimented with it yet, we believe
that using characters as units can inspire different RNNLM
architectures that are not possible with longer units. This is
because the majority of the parameters can be put into the
inner layers instead of managing high-dimensional input and
output layers.

In future we plan to extend this work to other languages,
possibly even languages which have less phonemic alphabet
than Finnish and Arabic. We will also explore new language
model adaptation scenarios that become possible for unlimited
vocabulary speech recognition.
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