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Abstract—Today, the vocabulary size for language models in
large vocabulary speech recognition is typically several hundreds
of thousands of words. While this is already sufficient in some
applications, the out-of-vocabulary words are still limiting the
usability in others. In agglutinative languages the vocabulary for
conversational speech should include millions of word forms to
cover the spelling variations due to colloquial pronunciations, in
addition to the word compounding and inflections. Very large
vocabularies are also needed, for example, when the recognition
of rare proper names is important.

Previously, very large vocabularies have been efficiently mod-
eled in conventional n-gram language models either by splitting
words into subword units or by clustering words into classes.
While vocabulary size is not as critical anymore in modern speech
recognition systems, training time and memory consumption
become an issue when state-of-the-art neural network language
models are used. In this paper we investigate techniques that
address the vocabulary size issue by reducing the effective vocab-
ulary size and by processing large vocabularies more efficiently.

The experimental results in conversational Finnish and Es-
tonian speech recognition indicate that properly defined word
classes improve recognition accuracy. Subword n-gram models
are not better on evaluation data than word n-gram models
constructed from a vocabulary that includes all the words in
the training corpus. However, when recurrent neural network
(RNN) language models are used, their ability to utilize long
contexts gives a larger gain to subword-based modeling. Our
best results are from RNN language models that are based on
statistical morphs. We show that the suitable size for a subword
vocabulary depends on the language. Using time delay neural
network (TDNN) acoustic models, we were able to achieve new
state of the art in Finnish and Estonian conversational speech
recognition, 27.1 % word error rate in the Finnish task and
21.9 % in the Estonian task.

Index Terms—language modeling, word classes, subword units,
artificial neural networks, automatic speech recognition

I. INTRODUCTION

INNISH and Estonian are agglutinative languages, mean-

ing that words are formed by concatenating smaller
linguistic units, and a great deal of grammatical information
is conveyed by inflection. Modeling these inflected words
correctly is important for automatic speech recognition, to pro-
duce understandable transcripts. Recognizing a suffix correctly
can also help to predict the other words in the sentence. By
collecting enough training data, we can get a good coverage of
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the words in one form or another—perhaps names and numbers
being an exception—but we are far from having enough training
data to find examples of all the inflected word forms.

Another common feature of Finnish and Estonian is that
the orthography is phonemic. Consequently, the spelling of a
word can be altered according to the pronunciation changes in
conversational language. Especially Finnish conversations are
written down preserving the variation that happens in colloquial
pronunciation [1]. Modeling such languages as a sequence of
complete word forms becomes difficult, as most of the forms
are very rare. In our data sets, most of the word forms appear
only once in the training data.

Agglutination has a far more limited impact on the vocab-
ulary size in English. Nevertheless, the vocabularies used in
English language have grown as larger corpora are used and
computers are able to store larger language models in memory.
Moreover, as speech technology improves, we start to demand
better recognition of e.g. proper names that do not appear in
the training data.

Modern automatic speech recognition (ASR) systems can
handle vocabularies as large as millions of words with simple
n-gram language models, but a second recognition pass with
a neural network language model (NNLM) is now necessary
for achieving state-of-the-art performance. Vocabulary size is
much more critical in NNLMs, as neural networks take a
long time to train, and training and inference times depend
heavily on the vocabulary size. While computational efficiency
is the most important reason for finding alternatives to word-
based modeling, words may not be the best choice of language
modeling unit with regard to model performance either,
especially when modeling agglutinative languages.

Subword models have been successfully used in Finnish
ASR for more than a decade [2]. In addition to reducing the
complexity of the language model, subword models bring
the benefit that even words that do not occur in the training
data can be predicted. However, subwords have not been used
for modeling conversational Finnish or Estonian before. Our
earlier attempts to use subwords for conversational Finnish
ASR failed to improve over word models. In this paper, we
show how subword models can be used in the FST-based
Kaldi speech recognition toolkit and obtain the best results
to date by rescoring subword lattices using subword NNLMs,
27.1 % WER for spontaneous Finnish conversations, and 21.9
% WER for spontaneous Estonian conversations. This is the
first published evaluation of subwords in conversational Finnish
and Estonian speech recognition tasks.
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Our conclusions are slightly different from those earlier
published on standard Finnish and Estonian tasks, where n-
gram models based on statistical morphs have provided a
large improvement to speech recognition accuracy [3], [2],
[4]. An important reason is that we are able to use very large
vocabularies (around two million words) in the word-based n-
gram models. Recently it has been noticed that the gap between
subword and word models becomes quite small when such
a large word vocabulary is used [5]. In our conversational
Finnish and Estonian experiments, word and subword n-gram
models performed quite similarly in terms of evaluation set
word error rate. Our new observation is that neural networks
are especially beneficial for modeling subwords—subword
NNLMs are clearly better than word NNLMs trained using the
full vocabulary.

Another approach for very large vocabulary speech recogni-
tion is using word classes in the language models. We evaluate
different algorithms for clustering words into classes. Recent
comparisons have shown an advantage in perplexity for the
exchange algorithm over Brown clustering, while clusterings
created from distributed word representations have not worked
as well [6], [7], [8]. We present additionally a novel rule-based
algorithm that clusters colloquial Finnish word forms, and
also evaluate word error rate. Surprisingly, class-based n-gram
models perform better than word models in terms of perplexity
and speech recognition accuracy in conversational Finnish and
Estonian.

Word classes and subword units are especially attractive in
NNLMs, because the vocabulary size has a great impact on the
memory consumption and computational complexity. The size
of the input layer projection matrix and the output layer weight
matrix, as well as the time required to normalize the output
probabilities using softmax, have a linear dependency on the
vocabulary size. The output normalization can also be made
more efficient by using one of the several methods that try to
approximate the full softmax, either by modifying the network
structure or the training objective. So far the only comparison of
these approximations for large-vocabulary NNLMs that we are
aware of is in [9]. They found hierarchical softmax to perform
best in terms of perplexity with a vocabulary of 800,000 words
and a feedforward network.

We compare hierarchical softmax, sampling-based softmax,
class-based models, and subword models in speech recognition
on languages that are known for very large vocabularies. Both
data sets contain around two million unique word forms. In our
experiments where the training time was limited to 15 days,
class-based NNLM:s clearly exceeded the performance of word-
based NNLMs in terms of perplexity and recognition accuracy.
The best results were from subword models. In the Estonian
task, the best subword vocabularies were quite large, and the
best result was from a class-based subword model. We also test
two methods for weighting separate language modeling data
sets: weighted sampling, which has already been introduced in
[10] and update weighting, which is a novel method.

All the neural network language modeling techniques
presented in this paper have been implemented in the open-
source toolkit TheanoLM [11], which we hope to lower the
threshold of using neural network language models in speech

recognition research.! We implemented hierarchical softmax
[12], noise-contrastive estimation [13], and BlackOut [14]
training criteria, and a lattice decoder that takes advantage
of parallel computation using a GPU.

We use a fairly complex recurrent model consisting of an
LSTM layer and a highway network to obtain state-of-the-
art results, and run the experiments on a high-end GPU. Our
experiments show that class and subword models are more
attractive than word models for several reasons. They are
efficient computationally and in terms of memory consumption,
and they can achieve better performance than word models.
Usually subword vocabularies include all the individual letters,
meaning that any word that uses the same letters can be
constructed. Class models are restricted to a certain vocabulary,
but the efficiency is not limited by the vocabulary size, so very
large vocabularies can be used.

To summarize, this is the first time Finnish and Estonian
subword models have outperformed word models in conver-
sational speech recognition, even without limiting the word
vocabulary size. We compare word clustering techniques and
show that class-based models outperform full-vocabulary word
models in these tasks. We also present the first comparison
of word, class, and subword NNLMs trained using different
softmax approximations, applied to speech recognition. Finally,
we test a novel method for weighting NNLM training corpora.

II. CLASS-BASED LANGUAGE MODELS

Finnish and Estonian are highly agglutinative languages, so
the number of different word forms that appear in training
corpora is huge. The pronunciation variation in colloquial
Finnish is also written down, making it very difficult to reliably
estimate the probability of the rare words in new contexts. If
we can cluster word forms into classes based on in which
contexts they appear, we can get more reliable estimates for
the class n-gram probabilities. In a class-based language model,
the probability of a word within its class is usually modeled
simply as the unigram probability of the word in the training
data [15]:

P(wt | Wt—n+1 - ..wt_l) =
P(e(wy) | e(wi—nt1) -« - c(we—1))P(wy | c(wy)),

where ¢(w) is a function that maps a word to a class. This is
also the model that we use in this article.

(1)

A. Statistical Methods for Clustering Words into Classes

A common cost function for learning the word classes is
the perplexity of a class bigram model, which is equivalent to
using the log probability objective:

L= llog P(c(wr) | c(wi—1)) +log Plwy | c(wy))]  (2)

t

Finding the optimal clustering is computationally very
challenging. Evaluating the cost involves summation over all

Uhttps://github.com/senarvi/theanolm
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adjacent classes in the training data [15]. The algorithms that
have been proposed are suboptimal. Another approach that
can be taken is to use knowledge about the language to group
words that have a similar function.

Brown et al. [15] start by assigning each word to a distinct
class, and then merge classes in a greedy fashion. A naive
algorithm would evaluate the objective function for each pair
of classes. One iteration of the naive algorithm would on
average run in O(Ny:) time, where Ny is the size of the
vocabulary. This involves a lot of redundant computation that
can be eliminated by storing some statistics between iterations,
reducing the time required to run one iteration to O(NZ).

To further reduce the computational complexity, they propose
an approximation where, at any given iteration, only a subset of
the vocabulary is considered. Starting from the most frequent
words, N¢o words are assigned to distinct classes. On each
iteration, the next word is considered for merging to one of
the classes. The running time of one iteration is O(NZ). The
algorithm stops after Ny, — N iterations, and results in all
the words being in one of the N¢ classes.

The exchange algorithm proposed by Kneser and Ney [16]
starts from some initial clustering that assigns every word to one
of N¢ classes. The algorithm iterates through all the words in
the vocabulary, and evaluates how much the objective function
would change by moving the word to each class. If there are
moves that would improve the objective function, the word is
moved to the class that provides the largest improvement.

By storing word and class bigram statistics, the evaluation
of the objective function can be done in O(N¢), and thus one
word iterated in O(NZ) time [17]. The number of words that
will be iterated is not limited by a fixed bound. Even though
we did not perform the experiments in such a way that we
could get a fair comparison of the training times, we noticed
that our exchange implementation needed less time to converge
than what the Brown clustering needed to finish.?

These algorithms perform a lot of computation of statistics
and evaluations over pairs of adjacent classes and words. In
practice the running times are better than the worst case
estimates, because all classes and words do not follow each
other. The algorithms can also be parallelized using multiple
CPUs, on the expense of memory requirements. Parallelization
using a GPU would be difficult, because that would involve
sparse matrices.

The exchange algorithm is greedy so the order in which
the words are iterated may affect the result. The initialization
may also affect whether the optimization will get stuck in
a local optimum, and how fast it will converge. We use the
exchange® tool, which by default initializes the classes by
sorting the words by frequency and assigning word w; to class
1 mod N¢, where i is the sorted index. We compare this to
initialization from other clustering methods.

2We are using a multithreaded exchange implementation and stop the training
when the cost stops decreasing. Our observation that an optimized exchange
implementation can be faster than Brown clustering is in line with an earlier
comparison [6].

3https://github.com/aalto-speech/exchange

B. Clustering Based on Distributed Representation of Words

Neural networks that process words need to represent
them using real-valued vectors. The networks learn the word
embeddings automatically. These distributed representations
are interesting on their own, because the network tends to
learn similar representation for semantically similar words [18].
An interesting alternative to statistical clustering of words is
to cluster words based on their vector representations using
traditional clustering methods.

Distributed word representations can be created quickly
using shallow networks, such as the Continuous Bag-of-Words
(CBOW) model [19]. We use word2vec* to cluster words
by creating word embeddings using the CBOW model and
clustering them using k-means.

C. A Rule-Based Method for Clustering Finnish Words

Much of the vocabulary in conversational Finnish text
is due to colloquial Finnish pronunciations being written
down phonetically. There are often several ways to write the
same word depending on how colloquial the writing style
is. Phonological processes such as reductions (“miksi” —
“miks” [why]) and even word-internal sandhi (“menenpd” —
“menempd” [/ will go]) are often visible in written form.
Intuitively grouping these different phonetic representations
of the same word together would provide a good clustering.
While the extent to which a text is colloquial does provide
some clues for predicting the next word, in many cases these
word forms serve exactly the same function.

This is closely related to normalization of imperfect text,
a task which is common in all areas of language technology.
Traditionally text normalization is based on hand-crafted
rules and lookup tables. In the case that annotated data is
available, supervised methods can be used for example to
expand abbreviations [20]. When annotations are not available,
candidate expansions for a non-standard word can be found
by comparing its lexical or phonemic form to standard words
[21]. The correct expansion often depends on the context. A
language model can be incorporated to disambiguate between
the alternative candidates when normalizing text. We are aware
of one earlier work where colloquial Finnish has been translated
to standard Finnish using both rule-based normalization and
statistical machine translation [22].

Two constraints makes our task different from text nor-
malization: A word needs to be classified in the same way
regardless of the context, and a word cannot be mapped to a
word sequence. Our last clustering method, Rules, is based on a
set of rules that describe the usual reductions and alternations in
colloquial words. We iterate over a standard Finnish vocabulary
and compare the standard Finnish word with every word in a
colloquial Finnish vocabulary. If the colloquial word appears to
be a reduced pronunciation of the standard word, these words
are merged into a class. Because all the words can appear
in at most one class, multiple standard words can be merged
into one class, but this is rare. Thus, there will be only a
handful of words in each class. Larger classes can be created

“https://code.google.com/archive/p/word2vec/
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by merging the classes produced by this algorithm using some
other clustering technique.

III. SUBWORD LANGUAGE MODELS

Subword modeling is another effective technique to reduce
vocabulary size. We use the Morfessor method [23], [24], which
has been successfully applied in speech recognition of many
agglutinative languages [4], [25]. Morfessor is an unsupervised
method that uses a statistical model to split words into smaller
fragments. As these fragments often resemble the surface forms
of morphemes, the smallest information-bearing units of a
language, we will use the term “morph” for them.

Morfessor has three components: a model, a cost function,
and the training and decoding algorithm. The model consists of
a lexicon and a grammar. The lexicon contains the properties
of the morphs, such as their written forms and frequencies.
The grammar contains information of how the morphs can be
combined into words. The Morfessor cost function is derived
from MAP estimation with the goal of finding the optimal
parameters 6 given the observed training data Dyy:

Orrap = argmax P(0 | Dw)
0

= argmax P(0)P(Dyw | 0) ®)
0

The objective function to be maximized is the logarithm of
the product P(0)P(Dy | 6). In a semisupervised setting, it is
useful to add a hyperparameter to control the weight of the
data likelihood [26]:

“4)

We use the hyperparameter « to control the degree of
segmentation in a heuristic manner. This allows for optimizing
the segmentation, either for optimal perplexity or speech
recognition accuracy or to obtain a specific size lexicon. A
greedy search algorithm is used to find the optimal segmentation
of morphs, given the training data. When the best model is
found, it is used to segment the language model training corpus
using the Viterbi algorithm.

We apply the Morfessor 2.0 implementation® of the Mor-
fessor Baseline algorithm with the hyperparameter extension
[27]. In the output segmentation, we prepend and append
the in-word boundaries of the morph surface forms by a “+”
character. For example the compound word “luentokalvoja”
is segmented into “luento kalvo ja” and then transformed to
“luento+ +kalvo+ +ja” [lecture+ +slide+ +s] before language
model training. All four different variants of a subword (e.g.
“kalvo”, “kalvo+”, “+kalvo”, and “+kalvo+”) are treated as
separate tokens in language model training. As high-order
n-grams are required to provide enough context information
for subword-based modeling, we use variable-length n-gram
models trained using the VariKN toolkit® that implements the
Kneser-Ney growing and revised Kneser pruning algorithms
[28].

L(0, Dw) =log P(0) + alog P(Dy | 6)

Shttps://github.com/aalto-speech/morfessor
Ohttps://github.com/vsiivola/variKN

In the speech recognition framework based on weighted
finite-state transducers (FSTs), we restrict the lexicon FST in
such a way that only legal sequences (meaning that a morph
can start with “+” if and only if the previous morph ends with
a “+”) are allowed [29]. After decoding the ASR results, the
morphs are joined together to form words for scoring.

IV. NEURAL NETWORK LANGUAGE MODELS

Recurrent neural networks are known to work well for mod-
eling language, as they can capture the long-term dependencies
neglected by n-gram models [30]. Especially the subword-based
approach should benefit from this capability of modeling long
contexts. In this article we experiment with language models
that are based on LSTMs and highway networks. These are
layer types that use sigmoid gates to control information flow.
The gates are optimized along with the rest of the neural
network parameters, and learn to pass the relevant activations
over long distances.

LSTM [31] is a recurrent layer type. Each gate can be seen
as an RNN layer with two weight matrices, W and U, a bias
vector b, and sigmoid activation. The output of a gate at time
step ¢ is

g(xy,he) = o(Way + Uhy—1 +b), )

where x; is the output vector of the previous layer and h;_q
is the LSTM layer state vector from the previous time step.
When a signal is multiplied by the output of a sigmoid gate,
the system learns to discard unimportant elements of the vector
depending on the gate’s input.

An LSTM layer uses three gates to select what information
to pass from the previous time step to the next time step
unmodified, and what information to modify. The same idea
can be used to select what information to pass to the next layer.
Highway networks [32] use gates to facilitate information flow
across many layers. At its simplest, only one gate is needed.
In the feedforward case, there is only one input, z;, and the
gate needs only one weight matrix, W,. The gate learns to
select between the layer’s input and its activation:

g(xt) = O-(Wa'xt + ba)
yr = g(z) © tanh(Wazy +b) 4+ (1 — g(x)) © a4

While LSTM helps propagation of activations and gradients
in recurrent networks, deep networks benefit from highway
connections. We did not notice much improvement by stacking
multiple LSTM layers on top of each other. While we did not
have the possibility to systematically explore different network
architectures, one LSTM layer followed by a highway network
seemed to perform well. The architecture used in this article
is depicted in Figure 1. Every layer was followed by Dropout
[33] at rate 0.2.

The input of the network at time step ¢ is wy, an index
that identifies the vocabulary element. The output contains
the predicted probabilities for every vocabulary element, but
only the output corresponding to the target word is used. The
vocabulary can consist of words, word classes, subwords, or
subword classes. The choice of vocabulary does not make any

(6)
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Fig. 1. The recurrent network architecture used in our experiments, unrolled
three time steps. The cell state C; of the LSTM layer conveys information
over time steps until the gates choose to modify it. One gate selects part of
this information as the output of the layer, h;, which is also passed to the
next time step. A highway network uses a gate to select which parts of the
output are passed to the next layer unmodified and which parts are modified.

difference with regard to the neural network training, except
that large vocabularies require more memory and are slower
to train.

Usually word vocabularies are limited to a shortlist of the
most frequent words. A special token such as <unk> can be
used in place of any out-of-shortlist (OOS) words, which is
necessary with RNN language models in particular. The NNLM
can be combined with a large-vocabulary n-gram model to
obtain a probability for every training word. The <unk>
probability represents the total probability mass of all OOS
words, which can be distributed according to n-gram language
model probabilities. An n-gram language model is convenient
to integrate with a feedforward NNLM, which is a particular
kind of n-gram model itself, but less trivial in our RNN decoder.
It also becomes computationally demanding to normalize the
resulting probability distribution correctly using a large n-gram
model [34].

In our baseline shortlist NNLMs we distribute the OOS
probability according to a unigram model. When rescoring
lattices, the output does not have to be a proper probability
distribution. Assuming that the probability mass that the NNLM
and n-gram models allocate to the OOS words are close to
each other, a reasonable approximation is to replace the OOS

probabilities with n-gram probabilities [34]. We tried this, but
did not get good results because the assumption was too far
from the truth. Our class NNLMs are similar to Equation 1,
except that RNNs do not fix the context to n previous words—
the length of the history used to predict the next word is limited
only by the mini-batch size.

Memory consumption becomes a problem when using GPUs
for training, since current GPU boards typically have no more
than 12 GB of memory. Each layer learns a weight matrix
whose dimensionality is input size by output size. For example,
an NNLM with one hidden layer of size 1,000 and a vocabulary
of size 100,000 requires a 1,000 by 100,000 matrix on the
input and output layer. Assuming 32-bit floats are used, such
a matrix uses 400 MB of memory. In addition, temporary
matrices are needed when propagating the data through the
network. Memory required to store the weight matrices can be
reduced by using a small projection layer and a small layer
before the output layer, or factorizing a large weight into the
product of two smaller matrices [35]. Another possibility is
to divide weight matrices to multiple GPUs. The size of the
temporary data depends also on the mini-batch size.

We did the experiments with quite a complex model to
see how good speech recognition accuracy we are able to
achieve in these tasks. The projection layer maps words to
500-dimensional embeddings. Both the LSTM and highway
network layers have 1500 outputs. With vocabularies larger than
100,000 elements we added a 500-unit feedforward layer before
the output layer to reduce memory consumption. With class
models mini-batches were 32 sequences and with other models
24 sequences of length 25. We also explored the possibility
of training models with larger vocabularies using hierarchical
softmax and sampling-based softmax. These approximations
are explained in more detail in the following sections.

A. Output Normalization

The final layer normalizes the output to provide a valid
probability distribution over the output classes. Normally the
softmax function is used:

_exp(wy)
Yti= =
> exp(zj)

At each time step ¢, the cross-entropy cost function requires
computing the conditional probability of the target word only,
P(wegr | wo ... we) = Y,w,,,- Still all the activations x; ; are
needed to explicitly normalize the probability distribution. This
becomes computationally expensive, because vocabularies can
be very large, and the cost of computing the normalization
term scales linearly with the vocabulary size.

There has been a great deal of research on improving the
speed of the softmax function by various approximations.
Hierarchical NNLM is a class-based model that consists of
a neural network that predicts the class and separate neural
networks that predict the word inside a class [36]. This can
reduce training time of feedforward networks considerably,
because different n-grams are used to train each word prediction
model. Hierarchical softmax is a single model that factors
the output probabilities into the product of multiple softmax

)
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functions. The idea has originally been used in maximum
entropy training [12], but exactly the same idea can be applied
to neural networks [37]. SOUL combines a shortlist for the
most frequent words with hierarchical softmax for the out-
of-shortlist words [38]. Adaptive softmax [39] is a similar
approach that optimizes the word cluster sizes to minimize
computational cost on GPUs.

Another group of methods do not modify the model, but
use sampling during training to approximate the expensive
softmax normalization. These methods speed up training, but
use normal softmax during evaluation. Importance sampling is
a Monte Carlo method that samples words from a distribution
that should be close to the network output distribution [40].
Noise-contrastive estimation (NCE) samples random words, but
instead of optimizing the cross-entropy cost directly, it uses an
auxiliary cost that learns to classify a word as a training word
or a noise word [13]. This allows it to treat the normalization
term as a parameter of the network. BlackOut continues this
line of research, using a stochastic version of softmax that
explicitly discriminates the target word from the noise words
[14].

Variance regularization modifies the training objective to
encourage the network to learn an output distribution that is
close to a real probability distribution even without explicit
normalization [41]. This is useful for example in one-pass
speech recognition, where evaluation speed is important but
the output does not have to be a valid probability distribution.
The model can also be modified to predict the normalization
term along with the word probabilities [42]. NCE objective also
encourages the network to learn an approximately normalized
distribution, and can also be used without softmax e.g. for
speech recognition [43].

B. Hierarchical Softmax

Hierarchical softmax factors the output probabilities into
the product of multiple softmax functions. At one extreme,
the hierarchy can be a balanced binary tree that is logs(N)
levels deep, where N is the vocabulary size. Each level would
differentiate between two classes, and in total the hierarchical
softmax would take logarithmic time. [37]

We used a two-level hierarchy, because it is simple to
implement, and it does not require a hierarchical clustering
of the vocabulary. The first level performs a softmax between
V/N word classes and the second level performs a softmax
between /N words inside the correct class:

P(U}t ‘ U)()...'wtfl) =

Pe(wy) | wo .. wi—1)Pwe | wo . .. wp—1, c(wy)) ®
This already reduces the time complexity of the output layer
to the square root of the vocabulary size.

The clustering affects the performance of the resulting model,
but it is not clear what kind of clustering is optimal for this
kind of models. In earlier work, clusterings have been created
from word frequencies [44], by clustering distributed word
representations [45], and using expert knowledge [37].

Ideally all class sizes would be equal, as the matrix product
that produces the preactivations can be computed efficiently

on a GPU when the weight matrix is dense. We use the same
word classes in the hierarchical softmax layer that we use
in class-based models, but we force equal class sizes; after
running the clustering algorithm, we sort the vocabulary by
class and split it into partitions of size v/N. This may split
some classes unnecessarily into two, which is not optimal. On
the other hand it is easy to implement and even as simple
methods as frequency binning seem to work [44].

An advantage of hierarchical softmax compared to sampling
based output layers is that hierarchical softmax speeds up
evaluation as well, while sampling is used only during training
and the output is properly normalized using softmax during
inference.

C. Sampling-Based Approximations of Softmax

Noise-contrastive estimation [13] turns the problem from
classification between /N words into binary classification. For
each training word, a set of noise words (one in the original
paper) is sampled from some simple distribution. The network
learns to discriminate between training words and noise words.
The binary-valued class label C,, is used to indicate whether
the word w is a training or noise word. The authors derive
the probability that an arbitrary word comes from either class,
P(Cy | w), given the probability distributions of both classes.
The objective function is the cross entropy of the binary
classifier:

L :Z[C’w log P(C, =1 | w)
w 9)
+ (1 - Cw)logp(cw =0 | w)]

The expensive softmax normalization can be avoided by
making the normalization term a network parameter that is
learned along the weights during training. In a language model,
the parameter would be dependent on the context words, but it
turns out that it can be fixed to a context-independent constant
without harming the performance of the resulting model [46].
In the beginning of the training the cost will be high and
the optimization may be unstable, unless the normalization
is close to correct. We use one as the normalization constant
and initialize the output layer bias to the logarithmic unigram
distribution, so that in the beginning the network corresponds
to the maximum likelihood unigram distribution.

BlackOut [14] is also based on sampling a set of noise
words, and motivated by the discriminative loss of NCE, but the
objective function directly discriminates between the training
word w7 and noise words wy:

L= [log P(wr)+ Y log(1—P(wy))]  (10)
wT WN

Although not explicitly shown, the probabilities P(w) are
conditioned on the network state. They are computed using a
weighted softmax that is normalized only on the set of training
and noise words. In addition to reducing the computation, this
effectively performs regularization in the output layer similarly
to how the Dropout [33] technique works in the hidden layers.

Often the noise words are sampled from the uniform
distribution, or from the unigram distribution of the words
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in the training data [46]. Our experiments confirmed that the
choice of proposal distribution is indeed important. Using
uniform distribution, the neural network optimization will not
find as good parameters. With unigram distribution the problem

is that some words may be sampled very rarely. Mikolov et al.

[47] use the unigram distribution raised to the power of /3. Ji
et al. [14] make 5 a tunable parameter. They also exclude the
correct target words from the noise distribution.

We used the power distribution with 8 = 0.5 for both
BlackOut and NCE. We did not modify the distribution based
on the target words, however, as that would introduce additional
memory transfers by the Theano computation library used by
TheanoLM. We observed also that random sampling from a
multinomial distribution in Theano does not work as efficiently
as possible with a GPU. We used 500 noise words, shared
across the mini-batch. These values were selected after noting
the speed of convergence with a few values. Small 3 values
flatten the distribution too much and the optimal model is
not reached. Higher values approach the unigram distribution,

causing the network to not learn enough about the rare words.

Using more noise words makes mini-batch updates slower,
while using only 100 noise words we noticed that the training
was barely converging.

These methods seem to suffer from some disadvantages.
Properly optimizing the § parameter can take a considerable
amount of time. A large enough set of noise words has to
be drawn for the training to be stable, diminishing the speed
advantage in our GPU implementation. While we did try a
number of different parameter combinations, BlackOut never
finished training on these data sets without numerical errors.

D. Decoding Lattices with RNN Language Models

While improving training speed is the motivation behind
the various softmax approximations, inference is also slow on
large networks. Methods that modify the network structure,
such as hierarchical softmax, improve inference speed as well.
Nevertheless, using an RNN language model in the first pass of
large-vocabulary speech recognition is unrealistic. It is possible
to create a list of n best hypothesis, or a word lattice, during the
first pass, and rescore them using an NNLM in a second pass.
We have implemented a word lattice decoder in TheanoLM
that produces better results than rescoring n-best lists.

Conceptually, the decoder propagates tokens through the
lattice. Each token stores a network state and the probability
of the partial path. At first one token is created at the start
node with the initial network state. The algorithm iterates by
propagating tokens to the outgoing links of a node, creating
new copies of the tokens for each link. Evaluating a single
word probability at a time would be inefficient, so the decoder
combines the state from all the tokens in the node into a matrix,
and the input words into another matrix. Then the network is
used to simultaneously compute the probability of the target
word in all of these contexts.

Rescoring a word lattice using an RNN language model
is equivalent to rescoring a huge n-best list, unless some
approximation is used to limit the dependency of a probability
on the earlier context. We apply three types of pruning, before
propagation, to the tokens in the node [48]:

e n-gram recombination. If there are multiple tokens,
whose last n context words match, keep only the best.
We use n = 22.

« cardinality pruning. Keep at most ¢ best tokens. We
use ¢ = 62.

e beam pruning. Prune tokens whose probability is low,
compared to the best token. The best token is searched
from all nodes that appear at the same time instance, or
in the future. (Tokens in the past have a higher probability
because they correspond to a shorter time period.) We
prune tokens if the difference in log probability is larger
than 650.

We performed a few tests with different pruning parameters
and chose large enough 7 and c so that their effect in the results
was negligible. Using a larger beam would have improved the
results, but the gain would have been small compared to the
increase in decoding time.

V. EXPERIMENTS
A. Data Sets

We evaluate the methods on difficult spontaneous Finnish
and Estonian conversations. The data sets were created in a
similar manner for both languages. For training acoustic models
we combined spontaneous speech corpora with other less spon-
taneous language that benefits acoustic modeling. For training
language models we combined transcribed conversations with
web data that has been filtered to match the conversational
speaking style [49].

For the Finnish acoustic models we used 85 hours of training
data from three sources. The first is the complete Finnish
SPEECON [50] corpus. This corpus includes 550 speakers
in different noise conditions that all have read 30 sentences
and 30 words, numbers, or dates, and spoken 10 spontaneous
sentences. Two smaller data sets of better matching spontaneous
conversations were used: DSPCON [51] corpus, which consists
of short conversations between Aalto University students, and
FinDialogue part of the FinINTAS [52] corpus, which contains
longer spontaneous conversations. For language modeling we
used 61,000 words from DSPCON and 76 million words of
web data. We did not differentiate between upper and lower
case. This resulted in 2.4 million unique words.

For the Estonian acoustic models we used 164 hours of
training data, including 142 hours of broadcast conversations,
news, and lectures collected at Tallinn University of Technology
[53], and 23 hours of spontaneous conversations collected at
the University of Tartu’. These transcripts contain 1.3 million
words. For language modeling we used additionally 82 million
words of web data. The language model training data contained
1.8 million unique words, differentiating between upper and
lower case. One reason why the Estonian vocabulary is smaller
than the Finnish vocabulary, even though the Estonian data set is
larger, is that colloquial Estonian is written in a more systematic
way. Also standard Estonian vocabulary is smaller than standard
Finnish vocabulary [25], probably because standard Finnish
uses more inflected word forms.

"Phonetic Corpus of Estonian Spontaneous Speech. For information on
distribution, see http://www.keel.ut.ee/et/foneetikakorpus.
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TABLE I
Out-of-vocabulary word rates (%) of the evaluation sets, excluding start and
end of sentence tokens. The last row is the full training set vocabulary, which
applies also for the class models.

Vocabulary Size Finnish ~ Estonian
100,000 6.67 3.89
500,000 3.36 1.59
2.4M (Fin) / 1.8M (Est) 2.31 1.01

We use only spontaneous conversations as development
and evaluation data. As mentioned earlier, Finnish words can
be written down in as many different ways as they can be
pronounced in colloquial speech. When calculating Finnish
word error rates we accept the different forms of the same
word as correct, as long as they could be used in the particular
context. Compound words are accepted even if they are written
as separate words. However, we compute perplexities on
transcripts that contain the phonetically verbatim word forms,
excluding out-of-vocabulary (OOV) words. The perplexities
from n-gram and neural network word and class models are
all comparable to one another, because they model the same
vocabulary consisting of all the training set words. Subwords
can model also unseen words, so the perplexities in subword
experiments are higher. OOV word rates of the evaluation sets
are reported in Table I for different vocabulary sizes.

The Estonian web data is the filtered data from [49]. The
same transcribed data is also used, except that we removed
from the acoustic training set three speakers that appear in the
evaluation set. The evaluation data is still 1236 sentences or 2.9
hours. The Finnish data is what we used in [11], augmented

with 2016 data of DSPCON and read speech from SPEECON.

While we now have more than doubled the amount of acoustic
training data, we have only a few more hours of spontaneous
conversations. The switch to neural network acoustic models
had a far greater impact on the results than the additional
training data. We still use the same Finnish evaluation set
of 541 sentences or 44 minutes. The Finnish development
and evaluation sets and reference transcripts that contain the
alternative forms are included in the latest DSPCON release,
without a few sentences that we could not license.

B. Models

The word based n-gram models were 4-grams, trained using
the Modified Kneser-Ney implementation of SRILM toolkit
[54]. Class-based models did not use Kneser-Ney smoothing,
because the class n-gram statistics were not suitable for
computing the Modified Kneser-Ney discount parameters. The
quality of our web data is very different from the transcribed
conversations, and simply pooling all the training data together
would cause the larger web data to dominate the model.
Instead we created separate models from different data sets,
and combined them by interpolating the probabilities of the
observed n-grams from the component models using weights
that were optimized on the development data. In the Finnish
task we created a mixture from two models, a web data
model and a transcribed data model. In the Estonian task we

created a mixture from three models, separating the transcribed
spontaneous conversations from the broadcast conversations.

The mixture weights were optimized independently for each
language model on the development data, using expectation
maximization (EM). In the Finnish experiments this gave the
transcribed data a weight slightly less than 0.5. In the Estonian
experiments the weights of the spontaneous conversations and
the web data were typically around 0.4, while the broadcasts
were given a weight less than 0.2. Morph models were similarly
combined from component models, but the EM optimization
failed to give good weights. We used initially those optimized
for the word-based models, and after the other parameters were
fixed, we optimized the mixture weights for development set
perplexity using a grid search with steps of 0.05.

The word clustering algorithms do not support training data
weighting, so we simply concatenated the data sets. There are
many parameters that can be tweaked when creating distributed
word representations with word2vec. We tried clustering words
using a few different parameters, and report only the best n-
gram model for each class vocabulary size. Within the set of
values that we tried, the best performance was obtained with
continuous bag of words (CBOW), window size 8, and layer
size 300 to 500.

For the subword language models, we trained Morfessor on a
word list combined from all training corpora; the difference to
other options such as token-based training was negligible. For
each language, four segmentations were trained with a-values
0.05, 0.2, 0.5, and 1.0. This resulted in respective vocabulary
sizes of 42.5k, 133k, 265k, and 468k for Finnish, and 33.2k,
103k, 212k, and 403k for Estonian. The sizes include the
different morph variants with “+” prefix and affix. When
training the subword n-gram models with the VariKN toolkit,
the growing threshold was optimized on the development set,
while keeping the pruning threshold twice as large as the
growing threshold.

Word-based neural network models were trained on two
shortlist sizes: 100k and 500k words. With 500k words
we added a normal 500-unit layer with hyperbolic tangent
activation before the output layer, which reduced memory
consumption and speeded up training. The neural networks
were trained using Adagrad [55] optimizer until convergence
or until the maximum time limit of 15 days was reached. All
neural network models were trained on a single NVIDIA Tesla
K80 GPU and the training times were recorded.

We tried two different approaches for weighting the different
data sets during neural network training: by randomly sampling
a subset of every data set in the beginning of each epoch
[10], and by weighting the parameter updates depending on
from which corpus each sentence comes from. In the latter
approach, the gradient is scaled by both the learning rate and a
constant that is larger for higher-quality data, before updating
the parameters. We are not aware that this kind of update
weighting would have been used before.

Optimizing the weights for neural network training is more
difficult than for the n-gram mixture models. As we do not have
a computational method for optimizing the weights, we tried
a few values, observing the development set perplexity during
training. Sampling 20 % of the web data on each iteration,
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or weighting the web data by a factor of 0.4 seemed to work
reasonably well. We used a slightly higher learning rate when
weighting the web data to compensate for the fact that the
updates are smaller on average. More systematic tests were
performed using these weights with the five vocabularies in
Table III.

It would be possible to train separate neural network models
from each data set, but there are no methods for merging
several neural networks in the similar fashion that we combine
the n-gram models. Often the best possible NNLM results are
obtained by interpolating probabilities from multiple models,
but that kind of system is cumbersome in practice, requiring
multiple models to be trained and used for inference. The layer
sizes and other parameters would have to be optimized for
each model separately.

We combined the NNLMs with the nonclass word or
subword n-gram model by log-linear interpolation. We did
not notice much difference to linear interpolation, so we chose
to do the interpolation in logarithmic space, because the word
probabilities may be smaller than what can be represented using
64-bit floats. We noticed that optimization of the interpolation
parameters was quite difficult with our development data, so
we gave equal weight to both models. In some cases it could
have been beneficial to give a larger weight to the neural
network model. Development data was used to select a weight
for combining language model and acoustic scores from four
different values.

C. Speech Recognition System

We use the Kaldi [56] speech recognition system for training
our acoustic models and for first-pass decoding. The TDNN
acoustic models were trained on a pure sequence criterion
using Maximum Mutual Information (MMI) [57]. The data
sets were cleaned and filtered using a Gaussian Mixture
Model recognizer and augmented through speed and volume
perturbation [58]. The number of layers and parameters of the
TDNN were optimized to maximize development set accuracy
on the word model. First-pass decoding was very fast with
real-time factor less than 0.5. The accuracy of the first-pass
recognition exceeded our earlier results on both data sets [11],
[49], due to the new neural network acoustic models.

Kaldi does not, at this moment, directly support class-
based decoding. Instead we created lattices using regular
n-gram models, and rescored them with class n-gram and
neural network models. Using the methods described in [59]
it is possible to construct a word FST that represents the
probabilities of a class-based language model and use this in
first-pass decoding or rescoring, without explicitly using the
classes. Kaldi does not have any restrictions on vocabulary
size, but compiling the FST-based decoding graph from the
language model, pronunciation dictionary, context dependency
information, and HMM structure did consume around 60 GB of
memory. The memory requirement can be lowered by reducing
the number of contexts in the first-pass n-gram model.

D. Results

Table II lists perplexities and word error rates given by n-
gram language models on the development data. The baseline

TABLE II
Results from word, class, and subword n-gram language models on
development data. Includes perplexity, word error rate (%), and word error
rate after interpolation with the nonclass model. Exchange algorithm is
initialized using classes created with the other algorithms, in addition to the
default initialization. Perplexities from word and subword models are not

comparable.
Classes Perplexity =~ WER  +Nonclass
Finnish, 2.4M words
Nonclass 736 30.5
Brown 2k 705 29.9 29.0
CBOW 2k 1017 332 30.2
Exchange 2k 698 29.7 29.1
Brown+Exchange 2k 701 30.0 29.0
CBOW-+Exchange 2k 695 29.8 29.3
Rules+Exchange 2k 700 29.3 28.9
Brown 5k 694 29.9 29.3
CBOW 35k 861 314 29.8
Exchange 5k 683 29.9 29.3
Brown+Exchange 5k 688 29.8 29.2
CBOW-+Exchange 5k 684 29.8 29.3
Rules+Exchange S5k 688 29.8 29.4
CBOW 10k 801 31.1 29.9
Exchange 10k 691 29.9 29.4
CBOW-+Exchange 10k 691 29.9 29.5
Rules+Exchange 10k 690 29.9 29.4
Finnish, 42.5k subwords
Nonclass 1127 29.9
Exchange 5k 1433 31.2 29.8
Finnish, 133k subwords
Nonclass 1135 30.1
Exchange 5k 1412 31.4 30.2
Finnish, 265k subwords
Nonclass 1128 30.2
Exchange 5k 1334 30.6 29.2
Finnish, 468k subwords
Nonclass 1100 30.0
Exchange 5k 1252 30.2 29.1
Estonian, 1.8M words
Nonclass 447 234
Brown 2k 438 22.8 22.5
Exchange 2k 439 22.9 22.6
Brown+Exchange 2k 438 22.6 22.5
Brown 5k 432 22.7 22.5
Exchange 5k 432 23.0 22.6
Brown+Exchange 5k 430 22.8 22.7
Estonian, 33.2k subwords
Nonclass 591 23.4
Exchange S5k 707 243 239
Estonian, 103k subwords
Nonclass 582 23.7
Exchange S5k 689 24.1 235
Estonian, 212k subwords
Nonclass 577 23.1
Exchange 5k 659 23.6 232
Estonian, 403k subwords
Nonclass 582 23.4
Exchange 5k 644 234 23.0

word model performance, 30.5 % on Finnish and 23,4 %
on Estonian can be compared to the various word class and
subword models. We have also included results from subword
classes created using the exchange algorithm for reference. The
word error rates were obtained by rescoring lattices that were
created using the nonclass word or subword model.

In the Finnish task, 2,000, 5,000, and 10,000 class vocab-
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ularies were compared. The worst case running times of the
exchange and Brown algorithms have quadratic dependency
on the number of classes. With 10,000 classes, even using 20
CPUs Brown did not finish in 20 days, so the experiment was
not continued. The exchange algorithm can be stopped any
time, so there is no upper limit on the number of classes that
can be trained, but the quality of the clustering may suffer
if it is stopped early. However, with 5,000 classes and using
only 5 CPUs, it seemed to converge in 5 days. Increasing the
number of threads increases memory consumption. Training
even 40,000 classes was possible in 15 days, but the results
did not improve, so they are not reported. The most promising
models were evaluated also in the Estonian task.

CBOW is clearly the fastest algorithm, which is probably
why it has gained some popularity. These results show, however,
that the clusters formed by k-means from distributed word
representations are not good for n-gram language models.
CBOW does improve, compared to the other clusterings,
when the number of classes is increased. Other than that, the
differences between different classification methods are mostly
insignificant, but class-based models outperform word models
on both languages. This result suggests that class-based softmax
may be a viable alternative to other softmax approximations
in neural networks. The performance of the Estonian subword
models is close to that of the word model, and the Finnish
subword models are better than the word model. Subword
classes do not work as well, but the difference to nonclass
subword models gets smaller when the size of the subword
vocabulary increases.

Mostly the differences between the different initializations of
the exchange algorithm seemed insignificant. However, our rule-
based clustering algorithm followed by running the exchange
algorithm to create 2,000 classes (Rules+Exchange 2k) gave
the best word error rate on Finnish. In the NNLM experiments
we did not explore with different clusterings, but used the ones
that gave the smallest development set perplexity in the n-gram
experiments. For Finnish the 5,000 classes created using the
exchange algorithm was selected (Exchange 5k). On Estonian,
initialization using Brown classes gave slightly better perplexity
(Brown+Exchange 5k) and was selected for neural network
models.

Table III compares training time, perplexity, and word error
rate in NNLM training, when different processing is applied
to the large web data set. Uniform means that the web data
is processed just like other data sets, sampling means that a
subset of web data is randomly sampled before each epoch,
and weighting means that the parameter updates are given a
smaller weight when the mini-batch contains web sentences.
Sampling seems to improve perplexity, but not word error
rate. Because sampling usually speeds up training considerably
and our computational resources were limited, the rest of the
experiments were done using sampling.

Table IV lists perplexities and word error rates given by
neural network models on the development data. The word error
rates were obtained by rescoring the same lattices as in Table II.
The shortlist and word class models can predict all training set
words, so the perplexities can be compared. Subword models
can predict also new words, so their perplexities cannot be

TABLE III
Comparison of uniform data processing, random sampling of web data by
20 %, and weighted parameter updates from web data by a factor of 0.4, in
NNLM training. The models were trained using normal softmax. Includes
development set perplexity, word error rate (%), and word error rate after
interpolation with the n-gram model.

Subset Training

Processing Time Perplexity =~ WER  +NGram
Finnish, 5k classes

Uniform 143 h 511 26.0 25.6
Sampling 128 h 505 26.2 25.6
Weighting 101 h 521 26.4 25.5
Finnish, 42.5k subwords

Uniform 360 h 679 25.2 24.6
Sampling 360 h 671 25.5 25.0
Weighting 360 h 672 25.1 24.6
Finnish, 468k subwords, 5k classes

Uniform 141 h 790 26.0 25.0
Sampling 119 h 761 259 25.1
Estonian, 5k classes

Uniform 86 h 339 19.8 19.9
Sampling 87 h 311 20.2 19.9
Weighting 105 h 335 20.0 19.6
Estonian, 212k subwords, 5k classes

Uniform 187 h 424 20.0 19.7
Sampling 130 h 397 20.0 19.8
Weighting 187 h 409 19.9 19.6

compared with word models. The percentage of evaluation set
words that are not in the shortlist and words that are not in
the training set can be found in Table I.

The class-based models were clearly the fastest to converge,
5 to 8 days on Finnish data and 4 to 6 days on Estonian
data. The experiments include shortlists of 100k and 500k
words. Other shortlist models, except the Estonian 100k-word
NCE, did not finish before the 360 hour limit. Consequently,
improvement was not seen from using a larger 500k-word
shortlist.

Our NCE implementation required more GPU memory than
hierarchical softmax and we were unable to run it with the
larger shortlist. With the smaller shortlist NCE was better on
Finnish and hierarchical softmax was better on Estonian. We
experienced issues with numerical stability using NCE with
subwords, and decided to use only hierarchical softmax in the
subword experiments. BlackOut training was slightly faster
than NCE, but even less stable, and we were unable to finish
the training without numerical errors. With hierarchical softmax
we used the same classes that were used in the class-based
models, but the classes were rearranged to have equal sizes as
described in Section IV-B. This kind of class arrangement did
not seem to improve from simple frequency binning, however.

In terms of word error rate and perplexity, class-based
word models performed somewhat better than the shortlist
models. The best results were from subword models. On both
languages it can be seen that class-based subword models
improve compared to the nonclass subword models when
the vocabulary size grows. In the Finnish task, the smallest
42.5k-subword vocabulary worked well, which is small enough
to use normal softmax without classes. In the Estonian task,
larger subword vocabularies performed better, provided that
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TABLE IV
NNLM results on development data. Word models were trained using class
and shortlist vocabularies. Subword models were trained using the full
subword vocabulary and on classes created from the subwords. Includes
perplexity, word error rate (%), and word error rate after interpolation with
the n-gram model. Perplexities from word and subword models are not

comparable.
Network Training
Output Vocabulary Parameters Time PPL  WER +NGram
Finnish, 2.4M words
HSoftmax 100k short 231M 360 h 535 269 259
NCE 100k short 230M 360 h 531 26.8 25.7
HSoftmax 500k short 532M 360 h 686 284 27.0
Softmax 5k classes 40M 128 h 505 262 25.6
Finnish, 42.5k subwords
Softmax 42.5k full 115M 360 h 671 25,5 25.0
HSoftmax 42.5k full 116M 360 h 700 257 25.0
Softmax 5k classes 40M 146 h 857 262 255
Finnish, 133k subwords
HSoftmax 133k full 164M 360 h 742 265 254
Softmax 5k classes 40M 190 h 811 26.1 254
Finnish, 265k subwords
HSoftmax 265k full 296M 360 h 849 270 256
Softmax 5k classes 40M 133 h 813 262 253
Finnish, 468k subwords
HSoftmax 468k full 500M 360h 1026 28.6 26.9
Softmax 5k classes 40M 119 h 761 259 251
Estonian, 1.8M words
HSoftmax 100k short 231M 360 h 321 206 199
NCE 100k short 230M 142 h 384 224 214
HSoftmax 500k short 532M 360 h 380 21.0 20.2
Softmax 5k classes 40M 87 h 311 202 199
Estonian, 33.2k subwords
Softmax 33.2k full 97TM 360 h 357 204 202
HSoftmax 33.2k full 97TM 293 h 370  20.7 20.2
Softmax 5k classes 40M 116 h 418 209 202
Estonian, 103k subwords
HSoftmax 103k full 134M 306 h 393 20.8 20.2
Softmax 5k classes 40M 126 h 410 205 199
Estonian, 212k subwords
HSoftmax 212k full 243M 360 h 411 209 202
Softmax 5k classes 40M 130 h 397 200 198
Estonian, 403k subwords
HSoftmax 403k full 434M 360 h 463 214 207
Softmax 5k classes 40M 124 h 395 203  19.6

the subwords were clustered into classes. The best result was
obtained by clustering 403k subwords into 5,000 classes using
the exchange algorithm.

Table V compares the best models on evaluation data.
The best word, class, subword, and subword class n-gram
and NNLM models were selected based on development set
word error rate. The evaluation set results show that the
advantage that the Finnish subword n-gram models had on
the development set was due to the optimization of the morph
segmentations on development data. Word classes are the best
choice for n-gram modeling. However, neural networks seem
to benefit especially subword modeling, because the overall
best results are from subword NNLMs. Classes work well also
in NNLMs, although the best Finnish shortlist model, 100k-
word NCE, performed exceptionally well in speech recognition.
Interpolation with the n-gram model gives a small but consistent
improvement.

TABLE V
Performance of best n-gram and NNLM models on evaluation data. All
NNLMs except the shortlist models were using softmax output. Includes
perplexity, word error rate (%), and word error rate after interpolation with
the nonclass or n-gram model. Perplexities from word and subword models
are not comparable.

N-Gram NNLM
Vocabulary PPL  WER +Nonclass PPL ~ WER +NGram
Finnish Full 2.4M Shortlist 100k (NCE)
Word 785 31.7 618 28.1 27.9
Rules+Exchange 2k Exchange 5k
Class 760 314 31.1 589 292 279
Morfessor 42.5k Morfessor 42.5k
Subword 1313 31.7 846 273 271
Morfessor 468k Morfessor 468k
Subword Class 1499 32.1 31.3 942 282 274
Estonian Full 1.8M Shortlist 100k (HSoftmax)
Word 483 26.1 344 23.1 22.6
Brown+Exchange 2k Brown+Exchange 5k
Class 465 253 25.2 324 222 222
Morfessor 212k Morfessor 33.2k
Subword 628 26.0 377 2277 22,6
Morfessor 403k Morfessor 403k
Subword Class 682 25.8 25.5 403 221 219

VI. CONCLUSIONS

Our experiments show that class-based models are very
attractive for conversational Finnish and Estonian speech
recognition. When the vocabulary contains millions of words,
class-based n-gram models perform better than normal word
models. A class-based NNLM can be trained in less than a
week and when the training time is limited, often performs
better than word-shortlist models.

In previous work, class-based models did not outperform
word-based models in recognizing standard Finnish and Es-
tonian, such as broadcast news [5]. Improvement was made
only when interpolating word and class models. One reason
why word classes are especially beneficial in the conversational
tasks may be that in the absence of large conversational corpora,
most of our training data is from the Internet. Web data is
noisy and there are many ways to write the same word.

One would expect less to be gained from using subword
models, when a word model is trained from full vocabulary of
millions of words. This seems to be the case, but RNNs are
good at learning the structure of the language from a text that
has been segmented into subwords. Subwords can also solve
the vocabulary size problem with neural network models. In the
Finnish task, the best results were from an NNLM trained on
a relatively small 42.5k-subword vocabulary with full softmax
output. In the Estonian task, the best results are from a large
403k-subword vocabulary that was clustered into 5,000 classes.

We explored the possibility of using NCE, BlackOut, or
hierarchical softmax to overcome the problem of training neural
networks with large output dimensionality. Generally they were
slower than class-based training, and did not converge to as
good a model in the 15-day time constraint, but Finnish 100k-
word NCE training gave good results on the evaluation set.
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The mixed results could mean that some details have been
overlooked in our implementation of sampling-based softmax.

In both tasks we obtained the best word error rates from a
subword NNLM interpolated with a subword n-gram model.
In the Finnish task the best result was 27.1 %, which is a 14.5
% relative improvement from the 31.7 % WER given by our
baseline 4-gram model. The best result in the Estonian task,
21.9 %, is a 16.1 % relative improvement from our 26.1 %
baseline WER. These are the best results achieved in these
tasks, and better than our previously best results by a large
margin. The best previously published results are 48.4 % WER
in the Finnish task [11] and 52.7 % WER in the Estonian task
[49].

The corpus weighting methods that we used in NNLM
training showed potential for improvement, but more thorough
research should be done on how to select optimal weights.
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ERRATUM

A highway network layer uses a separate bias for its gate,
distinguished by the index o in Equation 6. The index was
missing in the published paper.



