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ABSTRACT

We describe the speech recognition systems we have created
for MGB-3, the 3rd Multi Genre Broadcast challenge, which
this year consisted of a task of building a system for transcrib-
ing Egyptian Dialect Arabic speech, using a big audio corpus
of primarily Modern Standard Arabic speech and only a small
amount (5 hours) of Egyptian adaptation data. Our system,
which was a combination of different acoustic models, lan-
guage models and lexical units, achieved a Multi-Reference
Word Error Rate of 29.25%, which was the lowest in the com-
petition. Also on the old MGB-2 task, which was run again to
indicate progress, we achieved the lowest error rate: 13.2%.

The result is a combination of the application of state-
of-the-art speech recognition methods such as simple dialect
adaptation for a Time-Delay Neural Network (TDNN) acous-
tic model (-27% errors compared to the baseline), Recurrent
Neural Network Language Model (RNNLM) rescoring (an ad-
ditional -5%), and system combination with Minimum Bayes
Risk (MBR) decoding (yet another -10%). We also explored
the use of morph and character language models, which was
particularly beneficial in providing a rich pool of systems for
the MBR decoding.

Index Terms— speech recognition, dialect adaptation,
subwords, neural network language models, system combi-
nation

1. INTRODUCTION

The Arabic track of the 3rd Multi-Genre Broadcast (MGB-3)
challenge [1] consists of both a speech-to-text transcription
task of Egyptian Dialect Speech and an Arabic Dialect Identi-
fication task.

Our team at Aalto University has recently got good results
in subword language models in Finnish and Estonian ASR
[2]. Even though we have no Arabic speakers and no previous
experience in Arabic, we decided to take the challenge and
benchmark our methods in Arabic ASR. We participated in
the speech-to-text transcription task to recognize Arabic Di-
alect Speech (Egyptian) using only those language and audio
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resources provided by the challenge organizers. In total 1200
hours of Arabic transcribed broadcast data, which was not
identified by dialect, is provided for the training of acoustic
models. For dialect adaptation 5 hours of transcribed data
is provided. For language modeling only a single corpus of
110M words is provided which is sourced from the Aljazeera
Arabic website. In addition to this year’s task of recognizing
dialectal speech, also the MGB-2 task [3] is re-run for progress
evaluation. The Aalto submission was jointly optimized on
both of these two tasks.

The following sections describe both our baseline system
for MGB-3 and MGB-2, as well as all individual improve-
ments done. As the MGB-3 task is to recognize Egyptian,
which does not have a canonical transcription method, mul-
tiple transcriptions per utterance were provided. Scoring is
done using Multi-Reference Word Error Rate (MRWER) [4].
The MGB-2 task did have a canonical transcription and is
hence using the normal Word Error Rate (WER) for reporting.
All speech recognition results in this paper, except for Sec-
tion 7, report error rates for the development sets of MGB-3
and MGB-2.

2. BASELINE SYSTEM

As a baseline to improve upon we first developed a system
similar to the baseline published by the challenge organiz-
ers. Using the Kaldi toolkit [5] we build an acoustic model
which is a purely sequence trained Time-Delay Neural Net-
work (TDNN) [6, 7] with i-vector based speaker adaptation
[8]. This is the same as done by the challenge organizers,
and similar to the published systems of the MGB-2 challenge
[9, 10, 11, 12], except for the Deep Neural Network (DNN)
architecture as explained below.

The baseline development was started by training first a
monophone Gaussian Mixture Model (GMM) from the 10,000
shortest utterances in the corpus that were marked to have
the highest confidence of having a correct transcription (Word
Match Error Rate, WMER = 0). After that, three tri-phone
models were built in succession, first a regular GMM model,
then a GMM model on top of features transformed with Linear
Discriminant Analysis (LDA) and at last a Speaker Adaptive
Trained (SAT) GMM model [13]. All models were trained
with the complete set of utterances that had WMER = 0. For
each model the alignments generated by the previous model



were used for initialization.
After training a regular GMM model, the Kaldi ‘clean and

segment’ scripts were used to automatically fix and clean the
transcriptions of the full training dataset, including the utter-
ances that had lower confidences in the training data. This re-
sulted in 1,022 hours of data of which 875 hours were marked
as speech. Using the ‘cleaned’ training data, a new SAT model
was trained which was used for providing alignments for i-
vector and DNN training.

The training of the TDNN models included volume pertur-
bation and three-way speed perturbation of the training data
[14] and the training of an LDA-based i-vector extractor. The
i-vectors were extracted for at most two utterances at a time to
provide training variability. Because the task did not include
speaker information, in decoding the i-vectors were extracted
per utterance.

From the final GMM model, alignment-lattices (which
contain multiple alignments per utterance) were generated. To-
gether with the i-vectors, the alignments and high-dimensional
MFCC features were joined in neural network training ex-
amples with the amount of context applicable for the used
network.

For the training of the TDNN’s the lattice-free MMI crite-
rion was used which does forward-backward decoding using
a phone language model to calculate the criterion and use it
as a loss function. For our baseline system we used a regular
TDNN with nine layers and ten million parameters. [6, 7]

For the language model we trained an n-gram model on the
provided text corpus with the VariKN toolkit [15]. This toolkit
is specifically made for modeling higher order n-grams which
is useful in the experiments done in the following sections. No
limit was set on the maximum n-gram order, but the pruning
parameters were tuned to result in a model with approximately
eight million n-gram contexts. In the resulting model more
than seven million of the contexts were of order three or lower.
The MGB-organizers’ baseline language models were trigrams
trained with SRILM toolkit, thus probably roughly the same
size, but pruned differently.

We experimented with both a grapheme-based lexicon and
the phoneme-based lexicon. In our experiments the grapheme-
based lexicon was superior and better suited to the planned
experiments, so only grapheme-based results (where the acous-
tic modeling units are the graphemes in the surface form of
the words instead of phonological units) are reported.

The results for both the Aalto and MGB-organizers’ base-
line are shown in Table 1. Aalto’s baseline outperforms the
organizers’ one, most likely because of different choices made
in the training of the acoustic model (e.g. different amount of
parameters / layers) and the language model.

3. ACOUSTIC MODELING IMPROVEMENTS

Because the recurrent architectures that capture longer term
dependencies have shown remarkable improvements for the

Table 1. Results for Aalto’s baseline compared to the results
published in [1].

System MGB-3 MGB-2

Baseline (Aalto) 51.66 21.64
Baseline (MGB) 58.0 22.6

DNN acoustic models [16], we decided to first experiment with
different DNN architectures. Both a unidirectional Long Short-
Term Memory (LSTM) and Bidirectional LSTM (BLSTM)
in combination with regular TDNN layers were trained. The
TDNN-LSTM model had 3 recurrent layers interleaved with 7
regular TDNN layers, looking back in total 50 frames (~1.5
seconds), predicting the label with a delay of 5 frames. In total
the TDNN-LSTM architecture had 37 million parameters.

For the BLSTM architecture three forward and three back-
ward layers were used that were preceded by three regular
TDNN layers. Both forward and backward it utilized 45 frames
(~1.4 seconds) and it had in total 48M parameters.

The number of layers and parameters for the acoustic
model were not very carefully tuned, most were kept to their
defaults or taken from successful Kaldi recipes. During train-
ing, a new recognition pass on the development set was done
in every 100 iterations and the training was stopped after the
WER on the MGB-2 development set stopped improving. For
the BLSTM model this occurred at iteration 1300, which cor-
responds to two completed epochs.

3.1. Adaptation

Up to this point the available six hours of MGB-3 Egyptian
dialect data had not been utilized at all. To utilize this data
and adapt the models to the Egyptian dialect data a simple
adaptation scheme was used.

First, the data was aligned with the same GMM model
that was used for the alignment of the TDNN training data.
Because all utterances had four transcriptions, all variants were
handled as their own utterance. This meant that the audio data
was replicated four times.

The resulting data was also speed and volume perturbated
and the same i-vector extractor was used to generate accompa-
nying i-vectors. After that, TDNN examples were generated
in the same manner and with the same parameters as done for
the original data.

To adapt the model, the training was continued from the
earlier best iteration with the same parameters as in the last
iteration of the normal training, but only using the Egyptian
adaptation data. Different learning rates were experimented
with and it was concluded that keeping the learning rate con-
stant at the same value as in the last normal training iteration
gave the best results. After every iteration, the development
set was recognized and the training was stopped after the MR-
WER on the MGB-3 development set stopped improving. For
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Fig. 1. Log probabilities and development word error rates in different stages of training. The single markers are error rates,
lines are log-probabilities. Red is MGB-3, blue is MGB-2. The iterations prefixed with ‘a’ are adaptation iterations.

Table 2. Results for acoustic modeling improvements.

Acoustic model MGB-3 MGB-2

Baseline (TDNN) 51.66 21.64
TDNN-LSTM 46.88 19.43
TDNN-BLSTM 45.77 18.20

ADAP-TDNN-LSTM 33.94 –
ADAP-TDNN-BLSTM 33.52 –

the adaptation of the BLSTM model this occurred after 24
iterations, which corresponds to 1.5 epochs. Note that one
epoch already had 12 variants of each audio sample, the prod-
uct of four transcription variants and three speed perturbation
variants.

Besides adapting the complete model, we also tried just
adapting one or multiple layers. This however, did not have as
strong effect as the adaptation of the complete model.

Our methods are similar to the ones used for speaker adap-
tation for DNN’s as done in [17, 18]. However, our method
was simpler as no extra regularization is used. Perhaps with a
better regularization method the model could be adapted even
more accurately.

3.2. Analyses

Figure 1 presents the evolution of both the log-probability of
the training and validation sets during training, as well as the
evolution of the WER. It clearly shows that the adaptation has
a great impact on both the log-probabilities and the MRWER
of the MGB-3 dataset.

Table 2 summarizes improvement obtained with the acous-
tic modeling improvements. The use of a TDNN-BLSTM
architecture over a normal TDNN improved the MGB-2 error
rates with 16% relative. On the MGB-3 dataset a 35% relative
improvement was obtained by using a TDNN-BLSTM archi-
tecture and adapting the final model with a small amount of
Egyptian dialect adaptation data. All further development ex-
periments use ADAP-TDNN-BLSTM for MGB-3 and TDNN-
BLSTM for MGB-2.

4. IN-DOMAIN N-GRAM LANGUAGE MODELS

Our baseline system does not utilize the in-domain data that
is available in the training transcripts for MGB-2 and adap-
tation transcripts for MGB-3. To use this data, we trained
separate language models on the in-domain data and used lin-
ear interpolation to create our target language models. For the
MGB-3 data we trained the model on the concatenation of all
transcription variants.

For both MGB-3 and MGB-2 we created a linear inter-
polated model of the background data and the applicable in-
domain data. The interpolation weight was optimized on the
perplexity of the development transcripts. Also the perplex-
ity calculation of MGB-3 was done using the union of all
transcription variants in the development set.

Also a smaller variant of mixed language model was cre-
ated for the first-pass decoding. The size was controlled with
the growing and pruning parameters of the VariKN toolkit and
the target size for the smaller model was approximately 6-8
million n-gram contexts. The larger n-gram model was used
for rescoring.

Perplexities and error rates are shown in Table 3. Because



Table 3. Results for n-gram language modeling improvements.
Lexicon size and oov rate are shown in italics.

Language MGB-3 MGB-2
model MRWER ppl WER ppl

11k / 21.14% oov 177k / 3.96% oov
In-Domain 47.07 968 19.42 2.053

1.3M / 3.99% oov 1.3M / 1.68% oov
Background 33.52 12,643 18.20 3,633
Interpolated 33.50 3,265 17.66 2,129
Rescored 32.57 2,834 17.25 1,883

of the small size of the in-domain data there are no improve-
ments in only using that data. Interpolating however does have
a positive effect, as does rescoring with a bigger language
model.

Different interpolation weights were also tested for the
different units as described in Section 5, but the same interpo-
lation weights were optimal for all units so a fixed interpolation
weight was kept also for the other language modeling units.

5. LANGUAGE MODELING UNITS

5.1. Subword modeling in ASR

Although the words might seem the most logical basic unit
for lexicon modeling, it can be beneficial to consider different
lexical units such as subwords or even characters. Previous
Arabic ASR systems have utilized grammatical or statistical
morphemes as units with varying success [19, 20, 21, 22, 23].

In agglutinative languages like Finnish and Estonian sub-
word units, such as morphs, are typically better than word-
based models, because the subword units cover almost un-
limited vocabulary of the language. Although Arabic is not
an agglutinative language, it has a general structure that is
suitable for surface form segmentation into subwords.

In our recent work [2] we developed efficient modeling of
subword units in the weighted finite state transducer frame-
work as is used in Kaldi. We continue similar experiments
here with different subword units and even character units. In
[24] there is a more detailed analysis on the use of character
models.

We trained subword models with four different vocabulary
sizes using Morfessor [25, 26], as well as character models.
The vocabulary sizes and parameters used as language model-
ing units are shown in Table 4. As previous research did not
indicate clearly about the ideal marking of subword units for
Arabic (in order to be able to reconstruct them), we trained
all models in 4 different variations; boundary tag (<w>), left-
marked (+m), right-marked (m+) and left+right-marked (+m+)
[2].

For all models we trained variable order n-grams with the
VariKN toolkit [15]. This toolkit trains a language model for

Table 4. Various language modeling units used in this work.

Unit Size Parameters

word 1.5M Words
sub-71k 71.2k Morfessor, α = 0.05, tokens
sub-51k 50.7k Morfessor, α = 1, types
sub-17k 17.2k Morfessor, α = 0.005, tokens
sub-1k 1.2k Morfessor, α = 0.05, types
char 39 Characters

variable order n-grams by growing and pruning. As the toolkit
is geared towards subword models, it allows for including
arbitrary long contexts which are useful in both subword and
character models to span over the same original context. Natu-
rally, the smaller the vocabulary, the higher order the resulting
n-gram models are.

5.2. Results

Table 5 shows rescored n-gram results for all subword seg-
mentations and boundary marking styles. For MGB-3 there
is no direct improvement in using smaller units than words,
although most results are close. In general the <w> style
marking seems to perform best.

For MGB-2 there is a clear benefit in using subword mod-
els, and even one of the character models outperforms the
word model. The optimal marker is slightly different, with
‘m+’ performing best for the larger vocabularies and <w> for
the smaller ones.

6. RNNLM

Most recently RNNs and their variants (LSTMs) have shown
significant improvements over traditional n-grams [27, 28, 29,
30, 31]. In addition to the n-grams, in this work we also
explored RNN based language models (RNNLMs) for lat-
tice rescoring in the second pass of recognition. We used
ThenanoLM toolkit [32] to train and test the RNNLMs. In
this work we trained long short-term memory (LSTM) based
LMs on characters, subwords (statistical morphs) and words.
We used the same LSTM architecture for both character and
subword models. A different architecture was used for mod-
els based on words. Our LSTM architecture consists of a
projection layer, hidden layer, highway layer and an output
layer. The projection layer projects the words into a continuous
space. The output layer is a softmax layer which computes the
probability of the current word given its context. The hidden
and highway layers use the tanh activation function. From
our experiments we found out that a highway layer, followed
by a LSTM hidden layer performs better than an architecture
which has multiple LSTM layers. The size of the projection
layer in character and subword models is 200 and in word
models 300. The hidden and highway layers of character and



Table 5. Speech recognition results for different lexical units
and unit markers.

Unit MGB-3 MGB-2

word 32.57 17.25

sub-71k

+m+ 32.99 17.09
+m 32.97 17.27
m+ 33.09 16.94
<w> 32.77 17.15

sub-51k

+m+ 33.42 17.13
+m 33.45 17.30
m+ 33.34 16.93
<w> 32.86 17.07

sub-17k

+m+ 33.16 16.93
+m 33.11 17.16
m+ 32.75 16.79
<w> 32.76 17.01

sub-1k

+m+ 33.26 17.33
+m 33.54 17.47
m+ 33.30 17.32
<w> 32.81 17.13

char

+m+ 33.65 17.38
+m 34.38 17.61
m+ 33.92 17.59
<w> 33.68 17.22

subword models consist of 1000 neurons, whereas the hidden
and highway layers of word models consist of 1500 neurons.

The size of the output layer of character, subword and
word models is dependent on the size of the vocabulary. Since
the vocabulary size is huge for word and subword models
we use classes to reduce the computational complexity in the
output layer. The words and subwords were grouped into
classes using the exchange word clustering algorithm [33, 34].
Since the words and subwords were grouped into classes the
probability of the current word is equal to the product of the
word probability given its class and the word’s class probability
given the context. For all the word and subword experiments,
except sub-1k, we used 2000 classes in the output layer. The
character and sub-1k experiments did not use classes.

All LSTM models were trained by back-propagation us-
ing the adaptive gradient (Adagrad) algorithm. Adagrad is a
modified version of stochastic gradient decent (SGD) with a
per-parameter learning rate. The parameters of the model were
updated after processing a mini-batch of training examples.
We used a mini-batch size 64 for character and subword mod-
els, and 32 for word models. In each mini-batch we used a
sequence length of 100 for character models, 50 for subword
models and 25 for word models. For all the experiments we
used an initial learning rate of 0.1. During training we used a
dropout of 0.2 for the hidden layer. We trained the models for

a maximum of 15 iterations. Since the maximum time limit of
a single job on our computing cluster is 15 days, we trained
the models for a maximum of 15 days. Except few, all the
models reported took less than 15 days to converge. Training
times of each model are given in Table 6.

For training the language models MGB-3 challenge pro-
vided us a cleaned and normalized dataset of 131M tokens
(includes sentence start and end markers) created from data
crawled from Aljazeera.net. In addition, 8.3M tokens of in-
domain data was available for MGB-2 (MGB-2 training data
transcripts) and 170K tokens of Egyptian data for MGB-3
(MGB-3 adaptation data transcripts). We tried to train LSTMs
on the in-domain data as well, but we did not succeed in ob-
taining any gains over the LSTMs trained on the background
data.

6.1. Results

In Table 6 we report the WERs of MGB-3 and MGB-2 devel-
opment sets using LSTM word, subword and character LMs.
First we report the error rates of rescoring the lattices with the
LSTM LMs (pure). Since the n-grams and LSTM LMs are
complimentary to each other we also report the WERs after
interpolating the lattices of the n-gram and LSTM LMs (int.).
From the Table 6 we observe that on the average, the word,
subword and character LMs improve the n-gram baselines by
3.9% and 5.4% relative, on MGB-3 and MGB-2 development
sets respectively. For both MGB-3 and MGB-2 the best seg-
mentations are subword models. For MGB-2 the character
model also outperforms the word model, for MGB-3 this is
not the case. Overall, the differences between the word and
character models are very small, leading us to believe that
the character models are on-par with the word models. When
we compare the different subword markers we see the same
pattern as we saw for MGB-2 in Section 5.2, the m+ markings
seem to perform best for the larger vocabularies and the <w>
marker for the smaller ones.

7. FINAL SYSTEMS

For our final system we have used results from multiple acous-
tic models and language models with different units. To take
advantage of the information contained in the lattices of differ-
ent systems we used MBR as a system combination technique
[35]. Lattices from different systems were combined and
MBR-decoded to give the final transcriptions.

Normally, lattices with different units are not combinable.
Therefore, a finite state transducer (FST) is created that maps
all subword sequences in a lattice to words. When care is taken
that the word vocabularies are the same, the systems can be
combined in a regular manner.

As the primary submission for MGB-3 we took the RNN-
interpolated systems created for all different language mod-
eling units and both the ADAP-TDNN-BLSTM and ADAP-



Table 6. The WERs of MGB-3 and MGB-2 development sets
using LSTM word, subword and character models. We also
report the WERs after linear interpolation with the n-gram
scores (int.). The interpolation coefficient was optimized for
the WER on development data.

Unit Time MGB-3 MGB-2
(hours) pure int. pure int.

word 360 32.34 31.34 17.13 16.33

sub-71k

+m+ 238 32.53 31.81 16.76 16.08
+m 222 32.57 31.78 16.83 16.20
m+ 216 32.37 31.53 16.51 15.96
<w> 160 32.96 31.89 17.20 16.34

sub-51k

+m+ 360 32.73 31.78 16.85 16.16
+m 232 32.67 31.93 16.78 16.16
m+ 201 32.10 31.39 16.43 15.90
<w> 256 32.29 31.29 16.60 16.03

sub-17k

+m+ 182 33.01 32.03 16.73 16.00
+m 165 33.05 32.14 16.79 16.21
m+ 170 32.85 31.85 16.56 15.88
<w> 236 32.35 31.33 16.87 16.19

sub-1k

+m+ 360 33.09 32.19 16.97 16.43
+m 266 33.12 32.33 17.09 16.60
m+ 331 33.12 32.31 16.83 16.32
<w> 355 32.47 31.71 16.56 16.12

char

+m+ 157 33.49 32.34 17.46 16.72
+m 360 33.55 32.66 17.43 16.78
m+ 360 33.65 32.44 17.37 16.67
<w> 188 32.77 31.81 16.93 16.27

TDNN-LSTM acoustic models. Unfortunately, at the chal-
lenge submission time a small number of subword systems
had not finished training and only 36 out of 42 systems were
used. For the secondary task, the MGB-2 challenge re-run,
we made a similar combination of the successful individual
system as we did for MGB-3. For contrastive submissions
we took for both MGB-3 and MGB-2 the best performing
character model, the best subword model and the word model.

7.1. Final results

Table 7 shows the results on both the development sets as well
as the official evaluation results for our selected systems. For
MGB-3 the evaluation results are close to the development
results. For MGB-2 however, the evaluation results are much
better, as a more careful text normalization had been applied
by the challenge organizers. Both tasks show the subword
models outperform word and character models. The word and
character models are close to each other in performance with
a slight edge for word models.

Besides MRWER, the organizers also published for the

Table 7. Development results and official MGB evaluation
results of all Aalto submissions.

System MGB-3 MGB-2
Dev. Eval. Dev. Eval.

Primary 28.19 29.25 14.79 13.2
Contr. 1 (char) 31.81 31.32 16.27 14.4
Contr. 2 (sub-17k) 31.33 30.52 15.88 14.0
Contr. 3 (word) 31.34 31.23 16.33 14.3

Table 8. Itemized improvements on dev set (relative to previ-
ous step).

Stage MGB-3 MGB-2
MRWER rel. WER rel.

Baseline (Aalto) 51.66 – 21.64 –

BLSTM 45.77 11.4 18.20 15.9
Adapted BLSTM 33.52 26.7
n-gram interp. 32.57 2.8 17.25 5.2
Subwords 32.75 -0.06 16.76 2.8
RNN interp. 31.29 4.5 15.88 5.3

MBR-decoding 28.19 9.9 14.79 6.8

MGB-3 evaluation set the WER for each reference transcrip-
tion and reported the average. For our primary system this was
37.5%, also the best compared to any of the other participants.

8. CONCLUSIONS

We have successfully build the best performing systems for the
2017 Arabic MGB challenge. We have precisely documented
our development process and reported intermediate results on
all steps. Table 8 shows a summary of the improvements as
well as their relative improvements to the previous steps. The
most relative gain was made by improving and adapting the
acoustic model, but also the rescoring with LSTM LMs and
the combination of systems that used different lexical units
contributed to the success of the system.

In future, both the acoustic model adaptation and the usage
of in-domain data in LSTM LM rescoring could be improved.
Also, we plan to further optimize and explore different LSTM
LM architectures for character and subword models.
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