
Helsinki University of Technology
Department of Computer Science and Engineering
Telecommunications Software and Multimedia Laboratory

IMAGE-BASED DETECTION OF DEFECTIVE LOGS

Seppo Enarvi

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Technology in Espoo, on August 16, 2006.

Supervisor: Professor Tapio Takala
Instructor: M.Sc. Kimmo Koskenohi

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
http://www.tkk.fi/

ABSTRACT OF MASTER’S THESIS

Author Date
Seppo Enarvi August 14, 2006

Pages
11 + 84

Title of thesis
IMAGE-BASED DETECTION OF DEFECTIVE LOGS

Professorship Professorship Code
Interactive Digital Media T-111

Supervisor
Professor Tapio Takala

Instructor
M.Sc. Kimmo Koskenohi

This thesis describes the development of a computer vision system that was installed at
the Stora Enso wood handling terminal in Uimaharju. A measurement station is responsi-
ble for scaling the logs that the terminal receives, but until now grading has been entirely
manual. The computer vision system substantially reduces the work load of the human
grader by automatically detecting defects from log end images. The human grader will
only grade the logs that the software suspects as being defective.

A comprehensive survey of basic image segmentation techniques is given. In particular
their application for the segmentation of color images is discussed. An explanation of is-
sues related to selecting a color space for a particular purpose and a review of the most
common color spaces is included. The development of the computer vision system that
comprises image acquisition, segmentation, object recognition, and feature classification
is described.

The major merit of the thesis is the development of algorithms that localize the end of a
log from a camera image, and detect if there are visible defects on the surface of the log
end. Localization of the log end is based on three-dimensional tables that represent typi-
cal wood colors, and the circular shape of the log end. Defects are detected using statisti-
cal features of the log end pixel colors.

Keywords: wood quality, image processing, color image segmentation, object rec-
ognition

TEKNILLINEN KORKEAKOULU
Tietotekniikan osasto
http://www.tkk.fi/

DIPLOMITYÖN TIIVISTELMÄ

Tekijä Päiväys
Seppo Enarvi 14.8.2006

Sivumäärä
 11 + 84

Työn nimi
IMAGE-BASED DETECTION OF DEFECTIVE LOGS
KUVALÄHTÖINEN VAJAALAATUISTEN TUKKIEN TUNNISTAMINEN

Professuuri Koodi
Vuorovaikutteinen digitaalinen media T-111

Työn valvoja
Professori Tapio Takala

Työn ohjaaja
Diplomi-insinööri Kimmo Koskenohi

Tässä diplomityössä on kuvattu Stora Enson Uimaharjun puuterminaalille rakennetun
konenäköjärjestelmän kehitystyö. Puuterminaalilla on mittalaitos joka vastaa terminaalin
vastaanottamien tukkien kuutioinnista, mutta tähän asti laadutus on tehty täysin
manuaalisesti. Konenäköjärjestelmä vähentää huomattavasti ihmisen laadutukseen
käyttämää työmäärää tunnistamalla automaattisesti laatuvirheitä tukinpääkuvista.
Laaduttajan tarvitsee käydä läpi vain tukit joita ohjelma epäilee vajaalaatuisiksi.

Diplomityö sisältää katselmuksen keskeisiin kuvien segmentointialgoritmeihin. Erityisesti
käsitellään niiden soveltamista värikuvien segmentointiin. Käyttötarkoitukseen soveltuvan
väriavaruuden valintaan liittyviä kysymyksiä selitetään ja mukana on katsaus yleisimpiin
väriavaruuksiin. Konenäköjärjestelmän, joka sisältää kuvankaappauksen, segmentoinnin,
hahmontunnistuksen ja ominaisuuksien erottamisen, kehitys selostetaan.

Työn suurin ansio on algoritmien kehittäminen, jotka paikallistavat tukin pään
kamerakuvasta ja tunnistavat onko siinä näkyviä laatuvirheitä. Tukin pään
paikallistaminen perustuu kolmiulotteisiin taulukoihin, jotka edustavat tyypillisiä puun
värejä, sekä tukin pään pyöreään muotoon. Laatuvirheet havaitaan tukinpääpikselien
värien tilastollisten ominaisuuksien perusteella.

Avainsanat: puun laatu, kuvankäsittely, värikuvan segmentointi, hahmontunnistus

ACKNOWLEDGEMENTS
This thesis is based on my work in a project ordered by Genera Oy, as a
subcontractor of Stora Enso Oyj. The project was part of the PUULA re-
search and development project coordinated by Metsäteho Oy. The objective
of PUULA was to develop automatic image-based scaling and grading of
wood raw material.

The supervisor of the thesis at Helsinki University of Technology was Prof.
Tapio Takala, and my instructor was M.Sc. Kimmo Koskenohi from Genera
Oy. I am grateful to Kimmo Koskenohi for providing me the opportunity to
work with him and learn from his practical and creative way of thinking.

Especially I would like to thank my mother, who kindly hosted me the time I
was writing this thesis, and gave me financial support throughout my studies,
and my father, who sparked my interest in computer science, taught me how
to write computer programs, and advised me to consider the Master of Sci-
ence program in Helsinki University of Technology.

Espoo, August 16, 2006
Seppo Enarvi

CONTENTS
1 INTRODUCTION ...1

1.1 THE PURPOSE OF THE THESIS ...1
1.2 THE SCOPE AND REQUIREMENTS FOR THE PROJECT3
1.3 AUTOMATIC GRADING OF WOOD ..4

1.3.1 Unsawn logs ..4
1.3.2 Sawmills...5

1.4 THE ORGANIZATION OF THE THESIS ...7

2 THE ENVIRONMENT ..8

2.1 EXISTING MITLA MEASUREMENT SYSTEM ...8
2.2 THE STRUCTURE OF THE NEW AUTOMATIC GRADING SYSTEM10

3 IMAGE ACQUISITION ... 12

3.1 LIGHTING ..12
3.2 FIELD OF VIEW...12
3.3 DEPTH OF FOCUS ..13
3.4 CAPTURE SIGNAL...14
3.5 SERIAL PORT LATENCY...14

4 COLOR IMAGE SEGMENTATION .. 16

4.1 DEFINITION OF IMAGE SEGMENTATION ...16
4.2 LIMITATIONS OF THE HUMAN PERCEPTION ..17
4.3 COLOR SPACES...19

4.3.1 RGB...19
4.3.2 HSV ...20
4.3.3 CIE XYZ...21
4.3.4 Perceptually uniform color spaces ...23

4.4 HISTOGRAM THRESHOLDING...23
4.4.1 Selecting an optimal threshold...23
4.4.2 Color images..24
4.4.3 Feature space clustering..25

4.5 OTHER REGION-BASED METHODS..26
4.6 BOUNDARY-BASED METHODS ...27

4.6.1 Point and line detection..27
4.6.2 Edge detection...28
4.6.3 Color edge detection..30
4.6.4 Edge linking ...31

4.7 PHYSICS-BASED APPROACHES..32

5 ADAPTING TO EARLY TRIGGERING OF IMAGE CAPTURE............... 35

5.1 LOCALIZING THE LOG IN REAL TIME ..35
5.2 DISCUSSION..38

6 LOG IMAGE SEGMENTATION ... 39

6.1 SELECTING A SEGMENTATION METHOD ..39
6.2 HSV WOOD COLOR MODEL...40
6.3 THE FINAL WOOD COLOR MODEL ...42

6.3.1 Wood species ..42
6.3.2 Adaptive membership tables..42
6.3.3 Bayes classifier ..43
6.3.4 Fuzzy regions ..44

6.4 DISCUSSION..45
6.4.1 Region-based segmentation ..45
6.4.2 Combining different segmentation algorithms..............................46

7 LOG END RECOGNITION... 47

7.1 REGION SIZE CONSTRAINT..47
7.2 REGION SHAPE CONSTRAINT ..49
7.3 THE FINAL LOG END RECOGNITION ALGORITHM51

8 CALCULATING EVIDENCE OF DEFECTS.. 53

8.1 E IDENCE FUNCTION ...53 V

8.2 DISCUSSION..54
8.2.1 Textural features..54
8.2.2 Learning classifiers ..55

9 DOUBLE FEED DETECTION .. 57

9.1 DETECTING IMAGES WITH TWO OR MORE LOGS.......................................57
9.2 DISCUSSION..60

10 RESULTS .. 62

10.1 PRACTICAL CONCERNS ..62
10.2 D FECT DETECTION...62 E

10.3 DOUBLE FEED DETECTION ..63

11 CONCLUSION... 64

APPENDICES... 66

APPENDIX A CAMERA MODEL ...66
APPENDIX B LINEAR SPATIAL FILTERING ..70

APPENDIX C CONVERSION FROM RGB TO HSV COLOR SPACE........................72
APPENDIX D MEMBERSHIP TABLES ...74
APPENDIX E DISJOINT-SET FOREST DATA STRUCTURE....................................77
APPENDIX F GLOSSARY OF COLOR TERMINOLOGY ...79

REFERENCES ... 81

ABBREVIATIONS
ACRM: Approximate Color-Reflectance Model

API: Application Programming Interface

CCD: Charge-Coupled Device; digital camera sensor technology

CIE: Commission Internationale de l'Eclairage; International Commission on
Illumination

CMY: Cyan, Magenta, Yellow; color space

CRT: Cathode Ray Tube; monitor technology

CT: Computed Tomography

DIAPM: Department of Aerospace Engineering, Politecnico di Milano

FSMLabs: Finite State Machine Labs, Inc.

HSV: Hue, Saturation, Value; color space

HTTP: Hypertext Transfer Protocol

IEEE: Institute of Electrical and Electronics Engineers, Inc.

I/O: Input / Output

MLP: Multi-Layer Perceptron; feedforward neural network with three or more
layers

MSE: Mean Square Error

MVE: Minimum Volume Ellipsoid; statistical cluster estimator

PAL: Phase-Alternating Line; analog color television standard

PDF: Probability Density Function

POSIX: Portable Operating System Interface; standard API for system calls

RGB: Red, Green, Blue; color space

RTAI: RealTime Application Interface for Linux

RTOS: Real-Time Operating System

SPD: Spectral Power Distribution

sRGB: Standard RGB; color space

VMEbus: VERSAmodule Eurocard; computer architecture

WLAN: Wireless Local Area Network

 1

1 INTRODUCTION

1.1 The purpose of the thesis
Stora Enso Group’s Uimaharju Sawmill and Enocell Pulp Mill are located on
the same industrial site in the village of Uimaharju in eastern Finland. The
wood handling terminal at the site is responsible for receiving, scaling, and
grading the raw material. It receives some 200 batches of logs each month,
each of which contains a couple of hundreds of logs.

Scaling is done in the measurement system of the wood handling terminal,
called Mitla (see Figure 1). The weight and dimensions of each log are de-
termined automatically. The measurement system compares the dimensions
against predefined standards and sorts for example too long and too thick
logs into separate bins. The measurement system also recognizes and sepa-
rates out logs that contain iron objects since they would be harmful if ended
up in a sawmill. Further sorting will be done manually after the measurement
system has processed the batch.

Figure 1. The Mitla measurement system for timber.

Along with the measurement data, several images are taken of each log and
archived on a computer. An employed person inspects the measurement
data and images in a separate office building and grades the batch for pric-
ing. Most of the logs do not contain defects and would not have to be graded
individually. Our aim was to develop software that reduces the manual work
by automatically detecting most of the logs that do not contain visible defects.

 2

The grade of a log that contains defects, such as rot, blue stain, shake, or a
fork, has to be reduced, or the log has to be rejected. A system that recog-
nizes the type of the defect and classifies the defective logs automatically
would be extremely demanding to implement in practice. Thus our starting
point was that the logs that the software considers potentially defective still
have to be graded by a human. Also, the software will detect the logs whose
dimensions do not meet the specified standards using the measurement
data. Those logs will be shown to the grader in any case.

The motivation of the project was to reduce work load, and consequently re-
duce labor cost at the wood handling terminal. The objective was that on av-
erage 90 % of the logs could be graded automatically. This would reduce the
work load by half a man-year. In the process the quality of the grading im-
ages was improved by enhancing the photographing conditions.

The system required minimal hardware investments. Three cameras had al-
ready been taking images of the logs for the purposes of manual grading,
and the software was designed to use the same images to recognize defec-
tive logs. Two cameras take images of both ends of the log (see Figure 2),
and one camera gives an overall image of the log.

a b
Figure 2. Both ends of a log. (a) This end of the log does not contain defects. (b) Rot is
clearly visible in this end of the log.

Implementation of the software did not require much more than well-known
image processing techniques either. The main contribution of this thesis is
the application of those techniques in practice. Defects in wood quality can
often be seen on the surface of the log ends. The log end can be located
from an image on the grounds of its typical color and shape. Defects can
then be detected as variations in the log end color. Figure 2 shows both log

 3

end images of a rotten log. The rot does not extend to the end in Figure 2(a).
In Figure 2(b) the rot is clearly visible as a black area in the center of the log
end.

1.2 The scope and requirements for the project
The grading was not designed to be foolproof. There are situations when it is
not possible to determine the internal quality of the wood simply by looking at
images—not even by a human. Obvious examples include logs whose ends
are covered by snow or clay, and logs that have defects inside that do not
extend to the surface of the log end. In such situations our software is unable
to determine the quality of the log. However, a person inspecting the images
could not do any better.

In the first phase the software is only required to recognize if there are any
kinds of defects in the wood or not. Afterwards the accuracy of the software
may be improved and the algorithm may be enhanced to identify the type of
the defect and grade every log automatically. That is, however, out of the
scope of this thesis. Some of the logs will without doubt erroneously pass the
detection even though they contain defects, and vice a versa. A small per-
centage of such errors will be tolerated.

The new software that attempts to detect defects runs without user interac-
tion. On the other hand, because of its limitations, a human grader is still
needed. All the logs that look suspicious to the software will still be rejected
or graded by a human grader.

Requirements for the automatic grading are summarized here:

1. The software runs without user interaction.
2. Every log will be marked as either passed or failed. Passed logs are

those where no internal defects were noticed. Failed logs are those that
the software suspects as being defected.

3. Only an average of 10 % of the logs (called false negatives) will be
marked as failed, but do not actually have any defects. Failed logs will
be shown on the computer screen in the Mitla office to a human grader.
In addition, logs, whose measured dimensions do not meet the stan-
dards selected for the batch, will be manually graded.

4. The software recognizes at least an average of 90 % of the logs that do
not contain internal defects and marks them as passed. Passed logs

 4

whose dimensions meet the quality agreement, will not be shown to the
person in the Mitla office. Those logs will be automatically qualified.

5. It is not specified how large percentage of the logs marked as passed
may actually contain defects (false positives). The number of false posi-
tives would be difficult to monitor, since logs that pass the automatic
grading are not verified by anyone. As an extreme example, software
that marked all the logs as passed would not conflict with any of the
above specifications. However, it is acknowledged that the number of
false positives will have to be kept very low.

6. Computation is adequately fast. Since the software is not used for sort-
ing the logs but only grading for pricing, the defect detection does not
have to work in real time. However, the wood handling terminal may re-
ceive as many as 20 batches of logs during one day, and the software
will have to process them before the next day.

7. The old system will run in parallel with the new system, and will be used
as it has been used so far, until the new system is proven to be fully
operational.

1.3 Automatic grading of wood

1.3.1 Unsawn logs
Inspection of quality is necessary in various stages of the production chain of
wood from a forest to a finished product. In the first place, accurate sorting
and pricing of raw material based on its quality makes better realization of the
value potential in each log possible. For example, the quality requirements of
sawmills are different from those of pulp mills [1].

Our software operates on log end images taken in the Mitla measurement
station, described in more detail in Chapter 2. In such environment each log
has to be processed fast and the image quality may be low. Grading is diffi-
cult because of the roughness of the log ends, and sometimes even impossi-
ble because of dirt or snow. Perhaps those reasons explain why computer
vision systems in such environments are often limited to size and shape
measurements, and grading is done manually. On the other hand the installa-
tion costs of a computer vision system, such as the one developed in this
project, are minimal. Recent development in consumer electronics has
brought the computer and camera prices down and it seems that the devel-
opment will continue while the image quality is improving.

 5

Österberg et al. have developed algorithms for grading based on log end im-
ages [1]. They use the Fourier transform of local neighborhoods [2] to deter-
mine annual ring density and orientation maps. By analyzing the maps it is
possible to detect rot and extract several features of the log that measure the
quality of the wood. Their methods were tested on images taken in a con-
trolled environment from logs that were cut using a sharp chain saw. The
methods were reported to work well with logs that contained a moderate
amount of defects.

In contrast to their analysis, our system is not able to extract features other
than the information whether the log contains defects or not. On the other
hand our software processes images from untreated log ends cut with a
chain saw or a harvester. Some of the log ends may be damaged or badly
rotten, and annual rings are not necessarily visible at all. The images have
been taken in the Mitla measurement station using consumer grade com-
puter and video hardware.

While we were able to increase the image quality, the resolution of standard
PAL video cameras is limited. To avoid interlaced images, we use only one
field whose resolution is 384 × 288 pixels. The log end does not fill the entire
image, so the resolution of the log end is even lower. Also, a practical system
needs a method for outlining the log end from the image.

1.3.2 Sawmills
When a log is taken to a sawmill, someone decides whether the log is more
valuable as lumber, veneer, or chips. If the log is made into lumber, a grader
or an automatic grading system inspects the board to find any defects prior to
cut-up. Finally, the board is graded in order to determine its value. [3]

The purpose of the defect detection prior to cut-up is to enable the operator
to generate the optimal way to cut the board to give the highest quantity or
value. There is typically very little time to make the decision. With the stress
involved, inspection by a human operator becomes unreliable. [4]

Some automatic grading systems are able to process boards up to 9 times as
fast as a human grader. Lycken compared one automatic grading system
with manual grading and noticed that the automatic grading is also more ac-
curate resulting in better value yield and quality yield. [5]

 6

Different technologies have been employed for scanning internal features of
logs, including gamma rays, x-rays, nuclear magnetic resonance, micro-
waves, ultrasound, vibration, and longitudinal stress waves. These technolo-
gies vary in degree of penetration and scanning resolution, but a greater
resolution comes with a greater price. [6]

Knowledge of the internal structure of unsawn logs makes optimal sawpat-
tern placement and increase in value yield possible [7]. However, technolo-
gies that measure wood density cannot detect color defects, such as stains
[3]. Good results have been attained also with cameras that sense visible
light, perhaps because the environment is not as demanding as in pulp mills
[1].

A typical color image-based automatic grading system at a sawmill scans the
four sides of a board, performs image segmentation, and detects or extracts
some features of the regions that potentially contain defects. The features
are then used to detect and classify defects. At their simplest the features
can be statistical properties such as the mean and standard deviation of the
pixel intensities. [4]

The vast majority of the segmentation algorithms that these systems use are
based on thresholding [8]. For example Conners et al. [9] first used thresh-
olding to separate the board from the background. Then they segment the
board image according to color clusters that can be found from its histogram.
Those colors that occur most frequently are considered as clear wood. Re-
gions that contain less frequently occurring colors are potential defects. We
will give a detailed explanation of the most common segmentation techniques
in Chapter 4.

The features that are used to classify the defects can be tonal or textural fea-
tures of the pixels in the region, or based on the size and shape of the region.
Tonal features measure the statistical properties of the pixel colors, and tex-
tural features are related to the spatial organization of the colors.

The structure of these computer vision systems is similar to that of our sys-
tem, but they work in a less demanding environment. Simple segmentation
algorithms can be used if the color of the background can be chosen and the
board images are clear. With higher quality images defects can be classified
more easily as well.

 7

1.4 The organization of the thesis
The next chapter describes the Mitla measurement system, and the compo-
nents of the new defect detection system, in more detail.

The conditions where the images are taken were improved slightly to obtain
higher quality images. Chapter 3 describes the changes that we made to the
environment, and the software that we developed for acquiring images.

A computer vision task typically starts with partitioning the image into regions
that correspond to object in the scene. The algorithm either needs to under-
stand the entire scene, or localize a single object from the image. The proc-
ess where the image is partitioned into meaningful regions is called segmen-
tation. Chapter 4 gives a review of the most common segmentation tech-
niques, and their applicability in different color spaces.

The image processing algorithms that we developed are presented starting
from Chapter 5, where a lightweight algorithm is developed for localization of
the log from an image. The algorithm is used in the real-time image acquisi-
tion component to select the image where the log lies as close to the center
of the image as possible.

In Chapter 6 we develop a more accurate pixel-based classifier for segmen-
tation of the log end images. The pixel-based classifier labels each pixel as
being part of the log end or not. In practice some of the pixels will be mis-
classified. An algorithm that recognizes the location of the log end using the
labels given by the pixel classifier is developed in Chapter 7. After the log
end pixels have been found, evidence of defects will be calculated from their
statistical characteristics. The decision whether the log contains defects or
not is a function of these characteristics. The features that we extract from
the log end region and the decision function is described in Chapter 8.

In order to be of practical use the system furthermore needs to recognize
situations where two or more logs enter the measurement system simultane-
ously. We developed an algorithm for double feed detection that is described
in Chapter 9.

The realization of the objectives of the project is evaluated in Chapter 10.
Finally, we conclude the thesis in Chapter 11.

 8

2 THE ENVIRONMENT

2.1 Existing Mitla measurement system
Mitla measurement system consists of a track through which logs are carried.
During that time the logs go through the following measurements:

1. The measurement of a batch starts when a crane lifts the logs onto a
weighting table, where four scales weight the logs.

2. Before the logs are photographed and their dimensions are measured,
they have to be separated from each other. There is a step feeder built
for this purpose that feeds the transfer conveyor with one log in ap-
proximately two seconds—just enough time for a log to be photo-
graphed before the next log is fed.

3. The logs are photographed from both sides. One overhead camera
gives a panoramic view of the transfer conveyor. These images are ar-
chived, and shown along with the measurement data at the Mitla office.

4. The logs are dropped into a free fall, during which several cameras take
images of the log from various angles against a bright surface. These
images are used to calculate the dimensions of the log.

5. Every now and then the system selects an arbitrary log for control
measurement, as required by the official wood measurement regula-
tions.

Computing is distributed among several computers. Figure 3 gives a general
picture of the interactions between these computers.

1. The system can be controlled from the cranes using a touch screen.
The cranes send commands to a server, and receive data and surveil-
lance images via IEEE 802.11 Wireless LAN connection.

2. A Windows-based server communicates with the cranes, and controls
the operation of the step feeder, the transfer conveyor, and the control
track through a VMEbus computer.

3. A Motorola VMEbus single-board computer mediates I/O between the
Windows server and the physical machinery. In addition, it receives
data from optical sensors and sends a message to a serial port when a
log passes the sensors.

4. A Windows-based server receives messages from a serial port and
takes images using a frame grabber board, when a log passes the opti-
cal sensors. In addition it takes surveillance images all the time, and
sends them to any cranes that are listening using a HTTP connection.

 9

Manual grading at the
measurement station

VMEbus computers responsible
of controlling the station and
colculating the dimensions of

the logs

Surveillance and control
using a touch screen in

the cranes
Windows server taking

images for archival
and for surveillance

Windows server coordinating
the communication and

accessing the log database

Control messages

Responses
to queries

Database queries and
control commands

Surveillance
images

Archived images

Synchronization of
the log database

Messages trigger
image capture

Linux server taking
images and detecting

defective logs 1

2

3

4

5

6
Figure 3. Simplified communication diagram of the computers involved in the Mitla sys-
tem. The new computer performing automatic grading is outlined with a red rectangle.

5. A VMEbus single-board computer captures silhouette images from logs
when they are dropped into the free fall, and calculates their volume
and dimensions from the images.

6. Measurement data, as well as the archival images are transferred to a
computer in the Mitla office using Ethernet local area network. After the
entire batch has been processed, a person at the Mitla office grades the
logs.

 10

2.2 The structure of the new automatic grading system
The most important artifact of this project is software that inspects images
taken from both ends of a log and detects defects in the wood. The new sys-
tem was developed in a computer that runs independently of the old system,
so that the logs could be graded manually until the defect detection was veri-
fied to operate correctly. Eventually the operation of the old computer that
has been taking archival and surveillance images will be discontinued, so the
new server has to be able to capture images and send surveillance images to
the cranes as well.

The new software runs on Linux operating system. We use the standard
Linux kernel, version 2.6.13.4, and a consumer grade computer. A frame
grabber board with multiple inputs is required. The step feeder passes 35
logs per minute through. The computer takes one general image above the
transfer conveyor and log end images from both sides. It receives a signal
from a serial port triggered by optical sensors when a log passes the cam-
eras. Because of an existing flaw in the optical sensors, the signal may
sometimes arrive to the computer too early. To cope with this problem we
have to take several images from the log ends and choose the best ones.

It takes approximately 700 ms to capture all the images. It became evident
that after taking all the images and choosing the best ones, there is not
enough time to grade the log before the next log arrives. Fortunately it is not
necessary to detect the defects in real time, since the operator at the Mitla
office does not have to grade the batch right away. Thus defect detection
was separated into a real-time component and a non-real-time component.

The real-time component captures constantly surveillance images, and when
it receives a signal from the serial port reader, it captures the archival im-
ages. The camera configuration, and some issues related to the software
capturing images, is discussed in Chapter 3. The algorithm we developed for
selecting the best frame is described in Chapter 4.

The non-real-time component periodically checks the disk for images of logs
that it has not processed yet. After processing a log, it writes the results to
another file. The file also indicates that the log has already been processed
and should be bypassed in subsequent cycles. The development of the soft-
ware that detects defects in logs is described in Chapters 6 through 8.

 11

A third process monitors changes in the surveillance images. Each time the
image capture server writes new surveillance images, the file monitor notifies
each of the HTTP servers that send images to cranes.

Image acquisition

Image capturerSerial port reader

Disk storage

Defect detection

Surveillance image transmission

File monitorHTTP server

Figure 4. Components of the new server.

The component diagram in Figure 4 shows the dependencies between the
components in the new server. Coupling between the three processes is low
because they do not need any inter-process communication other than the
images stored on a hard disk, making debugging easier.

 12

3 IMAGE ACQUISITION

3.1 Lighting
Sometimes the easiest way to improve the accuracy of a computer vision
system is to enhance the image quality. We made some modifications to the
photographing conditions to improve the quality of the log end images.

Logs may pass the cameras from various distances, but the distance should
not affect the brightness, or the scale, of the log, as seen to the camera. We
replaced the few lights that were already installed with several more intensive
lights, scattered evenly above the transfer conveyor. In addition to the more
even illumination, the intensity enables us to use smaller aperture that pro-
vides greater depth of focus.

3.2 Field of view
Earlier the cameras that take the log end images had been placed almost
immediately next to the transfer conveyor. As a result, field of view1 had to
be wide, and consequently a short log on one end of the transfer conveyor
appeared a lot smaller to the camera in the other end. The problem had been
solved by placing two cameras on each side of the transfer conveyor with
different focal lengths. Each time a log passed the cameras, its placement
was determined using optical sensors. If the log was close to the cameras on
either side, the camera with shorter focal length was selected on that side,
and vice versa.

We took the cameras further away from the transfer conveyor and increased
their focal length to compress perspective. They are photographed through
mirrors; otherwise the cameras would not fit inside the building. Now the logs
appear approximately same sized to the cameras, regardless of their position
on the transfer conveyor. Unfortunately it was physically impossible to posi-
tion the mirrors on level with the transfer conveyor. Instead, the mirrors have
to be somewhat higher. As a result the entire trunk is usually seen to the
camera, not just the log end.

We use CCD cameras that have 1 ∕ 3” (4.8 mm x 3.6 mm) sensors. The logs
passed the cameras from only 1–4 meter distance. The cameras had zoom
lenses adjusted to different focal lengths. The maximum height of an object
can be calculated given its distance to the lens, sensor height, and focal

1 The part of the world that is visible to the camera at any given time.

 13

length, as derived in Appendix A using the pinhole camera model. Assuming
sensor height is s and focal length is F, the maximum height of an object at
distance D is

D
F
sS = . (1)

For example, a single 16 mm lens would have provided a field of view that is
23 cm high at one meter distance (3.6 mm ∕ 16 mm · 100 cm), and 90 cm
high at four meter distance. Logs close to the camera might not have fitted in
the picture, and logs further away would have appeared too small. We moved
the cameras to 6–9 meter distance and installed lenses with fixed 50 mm fo-
cal length. Now the field of view at six meter distance is 43 cm high, and at
nine meter distance it is 65 cm high. Because the perspective is fairly con-
stant over the breadth of the transfer conveyor, the old system no longer
needed two cameras on each side. We took two of the cameras from the old
system, and connected them to the new server.

3.3 Depth of focus
Another thing that might become a problem, when we only use one camera
on each side, is depth of focus1. The placement of the logs varies several
meters, and they should still appear sharp enough regardless of their posi-
tion. A formula for depth of focus was derived in Appendix A:

22

22
DH
HD

DH
DH

DH
DHDOF

−
=

+
−

−
= (2)

Here D is the distance to which the lens is focused. H is the hyperfocal dis-
tance2 of the lens that depends among other things on the aperture number.
Unfortunately we do not know what the aperture numbers were before and
after the change. To give a clue of what happens when we increase distance
and focal length, depth of focus is calculated in Table 1 for some common
aperture sizes.

1 The distance from the closest point that appears to be in focus to the furthest point that
appears to be in focus.
2 The nearest distance, such that a lens focused at that distance has a depth of focus that
stretches to infinity.

 14

Table 1. Depth of focus for some camera configurations.

 F = 16 mm
D = 2.5 m

F = 50 mm
D = 7.5 m

n = 2.8 1.1 m 0.9 m
n = 5.6 2.5 m 1.9 m
n = 8 4.5 m 2.8 m

3.4 Capture signal
The measurement system uses optical sensors to trigger the capture of log
images. A serial cable that delivers this signal was tapped off and connected
to the new computer. The message that triggers the image capture uses AS-
CII character set. The format is shown in Table 2. It contains the following
fields:

• STX (ASCII Start of Text) is a transmission control character that indi-
cates the start of a message.

• Mode is either ASCII “a”, “b”, “c”, or “d”. Earlier, when there were two
cameras on either side, Mode field was used to indicate which cameras
should be used. Now that the depth of focus is greater, Mode field is re-
dundant.

• Batch ID and Log ID give a unique identifier for each log. They are both 6-
digit decimal numbers encoded using ASCII characters “0” through “9”.

• CR (ASCII Carriage Return) is a transmission control character that indi-
cates the end of a message.

Table 2. The format of the message that triggers image capture.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
STX Mode Batch ID Log ID CR

3.5 Serial port latency
Image acquisition proved to be one of the most challenging tasks in this pro-
ject because of various problems with image acquisition under Linux envi-
ronment. For reasons that are still unclear to us there was occasionally sig-
nificant latency in the capture signal. As a result the images were taken too
late. Real-time problems like this are hard to trace because they can be re-
lated to any of the software and hardware components in the system. The

 15

program logic was correct; the only problem was that the system could not
meet the time demand.

Sometimes the only option to trace real-time problems is to increase logging.
We wrote the millisecond precision system time to a log between function
calls in the serial port reader. The serial port reader uses standard UNIX se-
lect and read system calls to wait for and read data from a serial port. We
noticed that occasionally, either the select or the read system call has been
delayed, for even more than a second, before the program has received data
fed to the serial port. The log that was supposed to be photographed had
passed the cameras before the signal had arrived.

Unfortunately the standard Linux kernel gives no guarantees for response
time. Several patches have been written that attempt to decrease its schedul-
ing latency. The problem they address is that the standard kernel code is not
pre-emptible—once a system call is made, the kernel will complete the task,
before control is returned to user space. One such patch that renders much
of the kernel code pre-emptible was migrated into the stock kernel in version
2.5. We enabled this patch with the CONFIG_PREEMPT option in our instal-
lation.

A more sophisticated, more complex, and sometimes more expensive ap-
proach would be to use a hard real-time operating system, such as RTLinux
from FSMLabs, or the RTAI from DIAPM [10]. These systems contain a small
kernel that provides a limited set of real-time services. The real-time kernel
runs the standard Linux kernel as the lowest priority task. Real-time tasks are
implemented as kernel modules, have direct access to memory and hard-
ware, and get executed whenever they need, while all the functionality of the
standard Linux kernel is available for non-real-time tasks.

We were reluctant to installing a real-time kernel, however, since our com-
pany is located far away from Uimaharju and maintenance that requires
physical access to the computer is difficult. Requesting real-time scheduling
and higher priority with sched_setscheduler POSIX function did not solve the
problem either. Fortunately, when we tried to isolate the problem, we noticed
that it only occurs when the defect detection is running. As a workaround we
decided to put the defect detection to sleep for the time images are captured.

 16

4 COLOR IMAGE SEGMENTATION

4.1 Definition of image segmentation
Image segmentation is an important step in most computer vision applica-
tions. Pham and Alcock concluded their review on automated grading and
defect detection stating that a major weakness in such systems is segmenta-
tion [4]. It was the most challenging part of our project as well. Hence we
have devoted an entire chapter for segmentation techniques.

Segmentation can be defined as the process of partitioning an image into
regions so that the following is true [11]:

• Pixels inside each region are connected.
• Each region is homogeneous according to some criterion.
• The union of any two adjacent regions is not homogeneous according to

the criterion.

The homogeneity of a region can be defined using some property of the pix-
els it contains, such as gray level, color, or texture. Segmentation techniques
have still been an active area of research, and various techniques have been
proposed in the literature. Many of them can be divided into one of the follow-
ing classes: [12]

• Region-based methods detect similarity. Their essence is in finding ho-
mogeneous regions.

• Boundary-based methods detect discontinuity. Their essence is in finding
boundaries for homogeneous regions.

• A large number of new algorithms combine information obtained using
both region-based and boundary-based techniques.

Gonzalez and Woods note that segmentation of complex images is one of
the most difficult tasks in image processing, and it should be considered if the
task can be made any easier by adjusting the photographing environment [2].
We had some control over the environment; changes that we made were dis-
cussed in Chapter 3.

In this chapter we give a review of elementary image segmentation tech-
niques. In particular we have looked into their application for the segmenta-
tion of color images. Therefore the properties of color and their representa-
tion are first discussed. Segmentation algorithms have often been designed
to imitate the way human vision discriminates objects, but to our project rele-

 17

vant is only that the segmentation algorithm discriminates the desired objects
from the background as successfully as possible. However, we process im-
ages taken using standard PAL video cameras. They represent color in a
way that is designed after the human perception; any information that a hu-
man cannot perceive would be redundant in most video applications. For that
reason it is necessary to understand the basics of how the human eye
senses color in order to understand what information color images contain.

4.2 Limitations of the human perception
There are four types of receptors in the retina of the human eye: three types
of cones, and rods. Of these only the cones are involved in color vision. The
cones are sensitive to a wide band of wavelengths, but each of the cone
types is more sensitive in a particular region of the spectrum. The cone types
are named red, green, and blue—roughly after the colors they are most sen-
sitive to. [2]

The energy absorbed by a cone is the integral of the spectral power distribu-
tion of the incident light weighted by a cone response function:

∫= λ
λλλ dSER R)()(

(3)

∫= λ
λλλ dSEG G)()(

(4)

∫= λ
λλλ dSEB B)()(

(5)

SR(λ), SG(λ), and SB(λ) are the cone response functions that define the spectral
sensitivity of the red, green, and blue cones respectively. R, G, and B are the
absorbed energies. E(λ) is the SPD of the incident light.

The mixture of R, G, and B determines the color that the person sees. The
visual system is able to perceive light whose wavelength is anything from
around 400 to 700 nm. However, the SPD of the light that generates a par-
ticular color sensation is not unambiguous—R, G, and B can have same val-
ues with different spectral power distributions. Correspondingly any color
sensation can be represented by three variables, but a display system that
uses only three primaries is not able to produce all the colors perceivable by
a human. [2]

Typically color is encoded as a three-dimensional vector. The same informa-
tion can be represented in different ways using different coordinate systems.

 18

A coordinate system along with a subspace within that system defines a color
space [2]. Practically all general purpose video hardware is designed for hu-
man perception, and operates in a three-dimensional color space, or on
grayscale images.

Color CCD cameras operating at visible light spectrum contain a grid of light
sensitive sensors. There are three types of filters over the sensors that selec-
tively attenuate some wavelengths of incident light. The spectral response of
the filters should closely match the cone response functions SR(λ), SG(λ), and
SB(λ). The cone responses have been empirically measured. In 1931 CIE
standardized the cone response data of the “Standard Observer” [13], de-
picted in Figure 5.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

380 420 460 500 540 580 620 660 700nmλ

p1
_

p2
_

p3
_

Figure 5. The cone response diagram of the Standard Observer. (Image
courtesy of Gernot Hoffmann).

The video signal that our frame grabber receives from the CCD cameras is
transmitted as analog PAL signal. PAL signal contains frames in YUV color
space, where color is encoded as one luminance and two chrominance com-
ponents [13]. Frame grabber boards typically store the acquired images in
RGB color space, or in some modification of YUV color space that saves

 19

bandwidth. We use the Video for Linux API [14], for reading the frames.
Video for Linux provides color space conversion back to RGB.

Since our images are in RGB color space that is based on human perception,
we tend to evaluate the solvability of an image processing task by visually
inspecting the images. It should be noted that humans can discern thousands
of shades of color, but only approximately 20 shades of gray [2]. The images
of an 8-bit RGB camera can resolve at most 256 shades of gray and more
than 16 million shades of color. Indeed color can be a significant clue in im-
age segmentation, but still the literature on color image segmentation is not
as extensively present as that on monochrome image segmentation [11].

Even more information could be obtained with special hardware that is not
bound to the limitations of the human perception. Multispectral cameras
measure more than three independent spectral bands, providing a better
spectral resolution. The range of wavelengths can also be extended beyond
the visible range. For example, the SmartSpectra system provides six bands
that are configurable in the range 400–1000 nm. [15]

4.3 Color spaces
Selection of the coordinate system is important for the effectiveness of the
segmentation, and the optimal color space depends on the contents of the
image [16]. We will first give an overview of different color spaces.

4.3.1 RGB
RGB is a Cartesian coordinate system, where red, green, and blue compo-
nents form an orthogonal basis. The major problem of RGB color space with
regard to segmentation is that it is difficult to combine the color information
inherent in each component. RGB image is a special case of multispectral
image, where the spectral information is captured in three overlapping com-
ponents. While the human eye has a very similar mechanism of capturing
color, our brain uses a different representation for interpreting the image. In
RGB color space all the color components depend on both intensity and
chromaticity: if the intensity of a pixel changes, all the components will
change accordingly, and the color information that humans perceive is scat-
tered over all the three components as well. [11]

Numerous coordinate systems have been proposed that can be obtained by
linear or non-linear transformation from RGB color space. Shih presents the
classification of color spaces into objective and subjective color spaces [17].

 20

An objective color space, such as RGB or CMY, is hardware-oriented, based
on physical measurements. Subjective color spaces are more descriptively
called perceptual color spaces. They are developed from the premises of our
visual sensation, and based on perceptual variables like hue, saturation, and
brightness.

4.3.2 HSV
Perceptual color spaces are by no means a new invention. The Munsell
Color System, which is still often referenced, specified color as a combination
of chroma, hue, and value—components that are closely related to satura-
tion, hue, and brightness respectively—in as early as 1905 [18]. HSV (hue,
saturation, value) color space is a similar but simpler concept designed for
computer graphics. Geometrically it is a cylindrical coordinate system tilted
so that the vertical axis (the z-axis) runs from black towards white through the
colors whose red, green, and blue components are all equal to each other
(see Figure 6). In other words, the vertical axis runs through the shades of
grey. We call that axis the value axis. Saturation is the distance of a color
from the value axis. Hue is the azimuthal axis (the θ-axis), spanning through
the wavelengths of visible light.

HSV was first used to ease color selection in interactive painting programs
[19]. Smith draws an analogy to a painter who first chooses a pigment, and
then lightens it by adding white, or pales it by adding grey. Some authors
have justifiably questioned the
benefits of perceptual color
spaces for color selection [20].
Nevertheless, they may prove to
be useful in various image proc-
essing tasks. Some tasks may be
easier to perform in one color
space than another because of
the organization of color in the
coordinate space. Joblove and
Greenberg bring out examples
from three-dimensional graphics
where color undergoes a trans-
formation that follows a complex
curve in RGB color space, but
might be computed by simply

H

R

G

B

V

S

Figure 6. The Cartesian RGB coordinate system
and the cylindrical HSV coordinate systems.

 21

performing linear interpolation in some other color space [21].

The major problem with HSV color space regarding image segmentation is
that the hue component has a singularity at the value axis. When saturation
is low, a small change in RGB values may cause a large jump in hue. On the
other hand, HSV coordinate system provides a good premise for segmenting
images in accordance with human perception, since our vision can easily
discriminate different hues, while disregarding changes in intensity and satu-
ration. [11]

4.3.3 CIE XYZ
Color spaces that we have discussed so far actually depend on the hardware
that produces the colors. In the case of an RGB camera, the filters determine
the values for R, G, and B. When the image is displayed on a CRT monitor,
the phosphors determine the primary colors, of which every color mixture is
composed. Device-independent color spaces are needed, if color has to be
preserved identically, when images are interchanged between different sys-
tems.

Device-independent color spaces are defined in terms of reference primaries.
From the cone response data, depicted in Figure 5, color matching functions
can be calculated that transform captured color into the color space specified
by particular primaries. CIE standardized in 1931 color matching functions for
a color space that spans the entire gamut of human vision. The color space
is based on three imaginary primaries, X, Y, and Z—as stated before, any
combination of three real primaries is not able to produce all the perceivable
colors. The system is designed so that the Y component is a measure of lu-
minance of a color. Chromaticity coordinates are obtained by normalizing the
quantities: [13]

ZYX
Xx
++

= (6)

ZYX
Yy
++

= (7)

ZYX
Zz
++

= (8)

Because the sum of chromaticity coordinates, x + y + z, always equals to 1, a
function of chromaticity can be depicted using a two-dimensional diagram—

 22

the third chromaticity coordinate is a function of the other two. In general,
color spaces are depicted in a diagram where x is the horizontal axis and y is
the vertical axis. In that case z = 1 – (x + y), and z has the highest value in the
origin. Figure 7 shows the gamut of human vision in CIE XYZ coordinate sys-
tem. The gamut of colors that graphics hardware can achieve is usually well
inside the gamut of human vision, and depends on the primaries of the spe-
cific hardware. Shown in the figure is sRGB color space that is a standard
designed to approximate the color spaces of typical desktop hardware [22].

CIE sRGBNTSC

380
460

470
475

480

485

490

5

515
520 525

530
535

540
545

550
555

560
565

570
575

580
585

590
595

600
605

610
620

635
700

49

500

505

510

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

y

Figure 7. The gamut of human vision in normalized CIE XYZ coordinate
system. (Image courtesy of Gernot Hoffmann.)

Colors can be transformed to a device-independent coordinate system with a
simple matrix multiplication, but this requires knowledge of the primaries of
the source color space. Since we only process images coming from a spe-
cific hardware, we would not benefit from using a standard color space. If the
program was supposed to work in different environments with the same pa-
rameters, it might be judicious to convert the frames to a standard color
space before processing them, but then the lighting conditions should also be
similar in each system.

 23

4.3.4 Perceptually uniform color spaces
Sometimes a color space that furthermore maps color in a perceptually uni-
form way is useful. For example, a change in hue in two different places of
the spectral locus might seem equally large to an observer, but the distance
moved in the CIE XYZ coordinate system might be unequal. In fact the Mun-
sell Color System is a perceptually uniform color space [23], but it was not
designed to be computationally simple. In 1976 CIE standardized two per-
ceptually uniform color spaces, (L*u*v*) and (L*a*b). The errors they suffer in
uniformity are about 6:1 over the visible gamut [24].

Perceptually uniform color spaces have the advantage when storing digital
images that the visual effect of quantization and round-off errors is more or
less constant over the visible gamut [24]. Limb et al. discuss the benefits of a
color space, in which the sensitivity to errors is constant at all points, when
encoding video signals [13].

4.4 Histogram thresholding
Most color image segmentation methods found from the literature are gener-
alizations of monochrome image segmentation into a three-dimensional color
space [11]. Even trivial monochrome image segmentation algorithms may
become complicated when color information should be employed. Under-
standing how the algorithms work in one dimension helps to understand the
problem in three dimensions.

The idea of gray scale thresholding is to divide the intensity scale into ranges
that correspond to different classes of objects. The homogeneity criterion
simply says that a region is homogeneous if the intensities of all the pixels
inside the region fall into exactly one of the intensity ranges. Segmentation
according to such criterion would be done by scanning the image pixel by
pixel, and labeling the pixels according to their intensity [2].

4.4.1 Selecting an optimal threshold
The intensity ranges can be defined in terms of threshold values. A fixed
threshold value often fails to give adequate results, because there is no uni-
versal value that would serve as a good threshold for all images, or even in
all areas of a single image. That is why many algorithms for finding the opti-
mal threshold for a particular image have been proposed. Some algorithms
divide the image into sub-images and select a separate threshold for each

 24

sub-image. The key issues in these algorithms are how to divide an image
into sub-images, and how to select an optimal threshold [2].

The optimal value for the threshold in a particular image can be defined as
the number of pixels that will be assigned to a wrong class. If an object in an
image is entirely brighter than any part of the background, the histogram of
the image will consist of at least two distinct modes: one is the histogram of
the background, and the other is the histogram of the object. In this idealistic
situation, selecting a threshold from somewhere between the modes would
result in perfect separation of the object and the background.

In practice parts of the histograms of the different objects in the image over-
lap. The optimal threshold value that results on average in the least amount
of wrong classifications can be calculated, if those histograms are known a
priori. One way of phrasing the problem is to consider the pixel intensities of
the different objects as random variables and their histograms as estimates
of their probability density functions. The optimal threshold can then be calcu-
lated by estimating the shapes of the PDFs and the relative sizes of the ob-
jects. [2]

For example, assuming that an object in an image and the image background
have Gaussian PDFs with equal variances, and the object fills exactly half of
the image, the optimal threshold is the average of the means of the PDFs [2].
Unfortunately there is no theoretical evidence that individual PDFs obey
Gaussian distribution [25].

Another approach would be to estimate a continuous PDF for the entire im-
age from its histogram, and search for dominant modes from the PDF. Two
dominant modes typically indicate the presence of an edge, and provide a
candidate for threshold value in between the peaks. A continuous PDF can
be derived from a histogram by minimizing the resulting mean square error,
but finding an analytical solution is not a simple matter. [2]

4.4.2 Color images
Thresholding is a one-dimensional operation. An analogous color image op-
eration would be dividing the color space into subspaces and classifying pix-
els according to which subspace contains the pixel’s color. The problem with
color image segmentation is how to define the subspaces. It is not possible to
divide a color space into arbitrary subspaces using threshold values.

 25

Each color component can be separately thresholded, but this fails to utilize
the color information as a whole for each pixel [11]. If the components are
thresholded independently, relations between the components cannot be no-
ticed. For example, if we wanted to select all the yellow pixels from an image,
we could set a criterion that the red and the green component have to be
above some threshold, and the blue component has to be below another
threshold. The criterion would specify a color subspace that contains yellow
colors, but is not as compact as possible—red and green colors would be-
come selected as well.

Sometimes it is possible to transform color into a suitable coordinate system,
where one axis represents a feature whose values are different in each class.
Thresholding can then be done using only that color component. For exam-
ple, all the yellow pixels can be selected in the HSV color space by threshold-
ing hue. Still thresholding is only one-dimensional operation, and it is often
difficult—or impossible—to find an adequate threshold.

4.4.3 Feature space clustering
When moving from monochrome images to color, the problem of automati-
cally selecting a threshold changes to automatically dividing the color space
into subspaces that correspond to different objects in the image. In general
the pixels can be classified using any local image features. Those features
are arranged in feature space vectors. The feature space can have only one
dimension, such as the pixel intensity, or it can have arbitrarily many dimen-
sions.

Each object in an image is likely to form a cluster of adjacent feature vectors,
just as dominant modes in a histogram often correspond to different objects
in the image. The procedure of finding the centers of the significant clusters
in the feature space is called feature space analysis, or, in statistics, the mul-
tivariate location problem [25]. The problem was formulated by Jolion et al.
as follows: given a set of points in a p-dimensional space, find the best parti-
tion of the space into significant clusters [26].

Some methods that estimate cluster centers operate on a discrete feature
space. If the feature vector components are discrete variables, as in the case
of color components, there is no loss of information [26]. Other methods use
a continuous coordinate system to avoid problems caused by quantization
artifacts [25]. We already noted that the intensity histogram of a monochrome
image can be used to estimate the continuous PDF of the pixel intensities,

 26

from which peaks produced by different regions can be searched. Similarly
the feature space can be modeled as a sample from a multivariate probability
distribution [25].

Clustering techniques often assume that the clusters follow Gaussian prob-
ability distribution, or depend on parameters, such as the number of clusters
in the feature space, that have to be known a priori. Guessing the correct
settings may prove to be difficult. The technique should also be robust,
meaning that it will perform reasonably well even if some data points are not
following the distribution of the cluster. A widely used estimator from statistics
that has been applied in computer vision is the minimum volume ellipsoid
estimator. [25]

Jolion et al. propose a robust clustering algorithm that is based on the MVE
estimator. The MVE estimator finds the minimum volume ellipsoid that en-
closes h = 0.5 percent of the data points in the feature space. The algorithm
proposed by Jolion et al. applies the MVE estimator with different values for
the h parameter. The compactness of the found clusters is measured by
comparing the distribution of the data points inside each minimum volume
ellipsoid with a multivariate Gaussian distribution. The cluster that best fits
the Gaussian distribution is labeled as a significant cluster and removed from
the data set. The algorithm is then repeated over the rest of the data points to
find further clusters. The required amount of computation is reduced by ran-
dom sampling. [26]

4.5 Other region-based methods
Region growing is an approach where a cluster of pixels is expanded by add-
ing adjacent pixels. The pixels are chosen so that the region remains homo-
geneous according to the selected criterion. When there are no such pixels
left, the algorithm stops. This method requires an initial set of “seed” points.
[2]

Region splitting and merging is in a way a contrary approach. It starts from
the state where the entire image is a single region. Unless the entire image
satisfies the homogeneity criterion, the region is divided into, for example,
four quadrants. Each of these subregions is divided into smaller and smaller
regions, until every region satisfies the homogeneity criterion. Finally any ad-
jacent regions whose union is homogeneous have to be merged. [2]

 27

These two methods are not limited to monochrome images in any way—they
are equally suitable for homogeneity criteria that concern any kinds of image
features.

4.6 Boundary-based methods
Segmentation methods that are based on discontinuity of some image fea-
ture include point detection, line detection and edge detection. If the feature
is a scalar value, such as the pixel intensity, the algorithms can often be im-
plemented using linear spatial filters.

These algorithms rarely produce perfect boundaries for regions. Edges may
be more than one pixel wide, or they may have discontinuities. In practice the
points detected as edge points have to be linked in order to get connected
boundaries for regions. [2]

4.6.1 Point and line detection
Detecting an isolated pixel that differs in intensity with its background is
straightforward. A filter mask that accentuates such pixels, but mutes areas
with constant intensity, is shown in Figure 8(a). When all the image pixels
below the mask have an identical intensity, the response of the filter will be
zero, because the sum of the coefficients equals to zero. If the pixel below
the center of the mask has greater or lower intensity compared to its
neighbors, the response of the filter will be greater or lower than zero respec-
tively. Those pixels that have intensity over a positive threshold or below a
negative threshold in the filtered image will then be labeled as isolated points.
[2]

Detecting a line that runs in horizontal, vertical, or diagonal direction is simi-
larly straightforward. The filter mask that is shown in Figure 8(b) accentuates
lines that run in horizontal direction, and mute areas that have a constant
intensity in vertical direction. The filter mask that is shown in Figure 8(c) ac-
centuates lines that slant to the right at an angle of 45° degrees, and mutes
areas that have a constant intensity in the parallel direction. Similar masks
can be constructed that detect vertical lines and lines that slant to the left at
an angle of 45° degrees. [2]

 28

-1 -1 -1 -1 -1 -1 2 -1 -1

-1 8 -1 2 2 2 -1 2 -1

-1 -1 -1 -1 -1 -1 -1 -1 2

a b c
Figure 8. Filter masks that detect (a) isolated points, (b) horizontal lines, and (c) diagonal lines.

Lines that run in an arbitrary direction are not easily detected using a 3 × 3
mask, but if the direction of the line is known a priori, the image can be ro-
tated so that lines oriented in the known direction will become for example
horizontal.

4.6.2 Edge detection
Edge detection is the most common approach for detecting discontinuity of
pixel intensities [2]. Many edge detection techniques are said to be parallel,
meaning that whether or not a set of points is on an edge does not depend
on previously found edge points [11]. For example, a common method for
edge detection is by modeling the image as a continuous function f(x, y), and
approximating its gradient ∇f(x, y) [2]. The gradient can be approximated us-
ing linear spatial filters that could in principle be applied to each pixel in paral-
lel.

Edge detection techniques that are not parallel are said to be sequential. A
shortcoming of sequential algorithms is that they require an initial point for
the detection process [11]. Some straightforward parallel techniques are pre-
sented below.

The gradient of scalar function f, denoted by ∇f, is a vector function that
points at the direction where f increases most rapidly. The rate at which f in-
creases at that direction is given by the magnitude of the gradient, |∇f|. The
gradient of a continuous two-dimensional function f(x, y) is defined as [27]

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∂

∂
=∇

y
yxf

x
yxfyxf),(),(),(.

(9)

The magnitude of gradient is simply

 29

22),(),(),(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=∇
y
yxf

x
yxfyxf . (10)

The rate at which some image feature changes can be approximated by lin-
ear spatial filters that attempt to calculate quantities from the discrete pixels
that are closely related to the partial derivatives of the continuous function.
These quantities are then combined similarly to Equation (10) to find the pix-
els where the feature changes most rapidly.

There are different approximations; particularly popular ones are the so-
called Sobel operators, shown in Figure 9. The difference between the first
and the third column in the 3 × 3 image region approximates the partial de-
rivative with respect to x, and the difference between the first and the third
row approximates the partial derivative with respect to y. The coefficients are
greater at the center to achieve some smoothing and suppress noise. [2]

-1 0 1 -1 -2 -1

-2 0 2 0 0 0

-1 0 1 1 2 1

a b
Figure 9. Sobel operators that approximate the first partial

derivative (a) with respect to x, and (b) with respect to y.

When the transition at the edge is gradual, filters that approximate second-
order differential operators, such as the Laplacian, are advantageous over
the gradient approximations [28]. The Laplacian of scalar function f, denoted
by ∇2f or ∆f, is a scalar function defined as the sum of the unmixed second
partial derivatives [27]:

2

2

2

2),(),(),(
y
yxf

x
yxfyxf

∂
∂

+
∂

∂
=Δ (11)

If the value of function f(x) increases over some interval of x, the second de-
rivative of f(x) has a peak where the transition begins, and a negative peak
where the transition ends. An imaginary straight line from the positive peak to

 30

the negative peak crosses zero near the midpoint of the transition. This zero-
crossing property can be used to find edges from an image. However, typi-
cally the Laplacian is too sensitive to noise, and it is used in combination with
a smoothing filter. [2]

4.6.3 Color edge detection
All the edge detectors we have discussed so far operate only on scalar val-
ues. In color images the value stored at each pixel, c(x, y), is a—typically
three-dimensional—vector. Any color space may be used, but for simplicity
we denote the components with R, G, and B.

Another way of looking at it is that the image is composed of three compo-
nent images, IR(x, y), IG(x, y), and IB(x, y), each of which contains scalar pixel
values. Edges can be detected individually from each component image, but
combining the results is not trivial, because of localization inaccuracies [28].

In a suitable coordinate system it may be sufficient to detect edges using only
one color component. For example, a very simple edge detector operates on
the intensity image, defined as the sum of the component images:

),(),(),(),(yxIyxIyxIyxI BGR ++= (12)

Taking the vector sum of the gradients of the color components is in fact
equal to taking the gradient of the intensity image that is the sum of the com-
ponent images, because gradient is a linear operator [29]:

)),(),(),((),(),(),(yxIyxIyxIyxIyxIyxI BGRBGR ++∇=∇+∇+∇ (13)

The major problem with the sum of the gradients is that if two of the gradients
have equal magnitude but opposite direction, their sum would provide a null
vector [30]. This problem is avoided if instead of taking the vector sum of the
gradients the sum of the magnitudes of the gradients is taken [28]:

),(),(),(yxIyxIyxI BGR ∇+∇+∇ (14)

However, optimal results cannot be achieved with any of the above ap-
proaches, because the relationships between the color components are ig-
nored [28].

Edge detectors that are based on the vector differences of the colors of adja-
cent pixels have been developed [28]. Tao and Huang make use of feature

 31

space analysis [29]. For each pixel the vector that contains the magnitudes of
the gradients, g(x, y), is projected onto various direction vectors, di:

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∇∇∇=⋅

i

i

i

BGRi

c
b
a

yxIyxIyxIyx),(),(),(),(dg (15)

Equation (15) gets the highest value when g(x, y) and di are parallel. The al-
gorithm finds the direction vectors from the center of each cluster in the color
space to the centers of all the other clusters. Near an edge g(x, y) should be
parallel to one of these direction vectors. Edge magnitude is defined as the
maximum of the projections of g(x, y) onto the direction vectors.

Color variants of the Canny operator are more advanced color edge detec-
tors. They are based on the 2 × 3 Jacobian matrix of the mapping from the
image plane to the color space: [28]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∇
∇
∇

=
),(
),(
),(

yxI
yxI
yxI

B

G

R

J (16)

The eigenvector of the 2 × 2 matrix JTJ that corresponds to the largest eigen-
value gives the direction in the image at which the largest change of color
occurs. [28]

Some experiments suggest that nearly all edges can be detected using only
the intensity image [31]. Thus the benefits of color edge detectors should be
weighed against the additional complexity. Even monochrome edge detec-
tors can provide useful information for more sophisticated color image seg-
mentation approaches.

4.6.4 Edge linking
Filtering an image with an edge detection operator and thresholding the re-
sulting is not enough to produce closed boundaries for image regions. Noise,
nonuniform illumination, and other effects cause inaccuracies in the edge
detector. Consequently the detected edge points still have to be linked into
meaningful edges. [2]

Methods that link detected edge points within a small neighborhood accord-
ing to some similarity criteria are simple to implement. Similarity may be
based, for example, on the direction and magnitude of the gradient vectors at

 32

the edge points. The neighborhood of each edge point is scanned for other
edge points and the points are linked if the angle and the vector difference
between their gradient vectors are small enough. [2]

Hough Transform is a convenient and popular technique that can be used for
edge linking, presented for instance in [2]. Given a set of points Hough
Transform is used to find parameters for curves so that the points lie as close
as possible to a small number of curves.

As an example we consider the case where the points should be fitted onto
lines. Each point (xi, yi) that fits onto the line y = ax + b satisfies

baxy ii += . (17)

The problem is to find such line, i.e. the parameters (a, b) when the points (xi,
yi) are known. Such parameters satisfy Equation (17), which may also be
written as

ii yaxb +−= . (18)

In the two-dimensional space that spans the possible values for parameters
(a, b), the values that satisfy Equation (18) are found from the intersection of
the lines b = -x ai + yi. In practice all the lines do not intersect at a single loca-
tion in the parameter space, because the points in the image plane rarely lie
on a single line. Locations near which several lines intersect can be found by
subdividing the parameter space into disjoint cells and counting the number
of lines that pass through each cell.

Edge points that lie approximately on a single line can be found using Hough
Transform. Those points should be linked if they are close enough to their
closest neighbor.

4.7 Physics-based approaches
Some segmentation approaches use a model of the physical process under-
lying image formation to better understand the image [31]. The idea is to ig-
nore discontinuities in color that are caused by optical effects, such as shad-
ing, shadows, and highlights, and partition the image into regions that more
closely resemble the real objects in the scene [11]. These approaches make
use of conventional segmentation algorithms, but are essentially more com-
plex than techniques with simple homogeneity criteria.

 33

Among the most popular image formation models are the dichromatic reflec-
tion model [32], and the approximate color-reflectance model (ACRM) [33].
The dichromatic reflection model is a reasonable approximation for a large
class of inhomogeneous dielectrics, and ACRM combines it with a unichro-
matic reflection model for metals [33].

These models are made computationally feasible, and do not follow perfectly
the surface reflectance laws. ACRM states that when a surface is illuminated
with a single spectral power distribution L(λ), the power of the reflected light,
E(g, λ), can be accurately approximated by a function of the form

)()()(),(λλλ SS CgMLgE = (19)

for metals, and

)()()()()()(),(λλλλλ BBSS CgMLCgMLgE += (20)

for inhomogeneous dielectrics. Parameter g indicates dependency on the
geometry of reflection (the direction of the incident light and the viewing di-
rection), and λ indicates dependency on the wavelength of light. Subscript S
indicates surface reflection, and subscript B indicates body reflection1.

Functions MS(g), CS(λ), MB(g), and CB(λ), are not given but depend on the ma-
terial. The significance of the equations comes from the fact that because the
hue of the reflected light does not depend on geometry, the spectral cluster
of the colors reflected by a single material always takes a certain simple
shape. Thus images may be segmented with the homogeneity criterion that
the histogram of each region has to match the shape predicted by the equa-
tions. [34]

Healey uses ACRM to segment color images into regions whose boundaries
follow the material boundaries in the image [31]. He employs both boundary-
based and region-based segmentation techniques. A segmentation algorithm
similar to region splitting and merging is used to find regions whose histo-
gram is likely to have been produced by a single material. However, edges
are first detected from the intensity image to simplify the region splitting—

1 The process when light enters the body of an object and is reflected by particles inside the
object is called body reflection. Surface reflection takes place on the surface of an object.
Typically body reflection tints the light with the object color while surface reflection produces
highlights that have the same color as the illumination.

 34

regions that do not contain edge pixels are assumed to correspond to a sin-
gle material.

 35

5 ADAPTING TO EARLY TRIGGERING OF IMAGE
CAPTURE

5.1 Localizing the log in real time
Before the logs enter the transfer conveyor, where they are photographed, a
step feeder separates them from each other. The step feeder passes 35 logs
per minute through, so there is approximately two seconds time to photo-
graph each log and write the images to disk before the next log is fed.

Optical sensors trigger the image capture when a log leaves the step feeder.
A log that has an unusual shape may trigger the sensor before its ends are in
the camera line. Also, a log occasionally leaves the step feeder in such an
orientation, that the image capture gets triggered before one or both of the
log ends are in the camera line. This flaw has always been in the system, but
it was due to be fixed along with the development of the computer vision sys-
tem.

Fortunately the signal is never transmitted too late. It is sufficient to continue
capturing frames for a short period of time, and choose a frame where the log
end is visible. The only challenging task is finding the correct frame in the
limited amount of time that is available before the next log arrives. It takes
approximately 700 ms to capture all the images we need, which leaves not
much more than a second of time to select the best frames and write them to
disk. In this chapter we present the selection algorithm we developed.

Because of the time constraints we did not want to use the same image
segmentation algorithm that is described in Chapter 6. After all, we do not
have to find the exact region of pixels that covers the log end—it is sufficient
to get an estimate of the horizontal position of the log, if there is a log in the
image. We apply an algorithm that localizes the log on all the frames taken
using the two cameras. The frame that we choose to save is the one where
the log is closest to the horizontal center of the frame.

We started with an algorithm that did not use color information, but only
brightness of each pixel. It simply calculated the sum of the brightness values
in every pixel-column. The column that had the greatest sum was an ap-
proximation for the horizontal position of the log. There are bright areas in the
background too, but because the log usually appears in the image as a verti-
cal bar, usually a column somewhere near the center of the log is the bright-
est column.

 36

This algorithm was too sensitive to changes in the environment. The mirrors
through which the log ends are photographed reflect light to the camera on
the opposite side, confusing the algorithm. In addition, depending on its ori-
entation, a carpet on the side of the images may reflect light, also forming
bright pixel-columns. Figure 10(a) shows an image containing bright areas in
the background, and Figure 10(b) shows the same image with bright areas
tinted red. Even if a column at the location of the log would be the brightest
column, it is difficult to make the decision whether there is a log in the image
or not, if the brightness of the background changes from time to time.

a b
Figure 10. (a) Grayscale image of a log. (b) The same image with the pixels whose bright-
ness is over a certain threshold tinted red.

Early computer vision systems that detected defects from lumber, processed
gray scale images because color cameras were expensive and color image
processing was slow. A fast and simple alternative to segmentation that was
often used was to divide the image into regularly shaped sub-images. A natu-
ral choice is to use rectangular regions. Defects were detected by extracting
statistical features such as the mean and standard deviation of the pixels in-
side each region. [4]

The problem with the subdivision approach is that to accurately locate the
objects the region size has to be small. However, to accurately calculate the
statistical features a large region is needed. Another benefit of segmentation
over the subdivision approach is that it makes measurement of features that
are based on the size and shape of the region possible.

The subdivision approach can be used for finding an approximate location for
the log. The accuracy of the location is sufficient for us even with a large re-
gion size. The region size just needs to be small enough so that at least one

 37

region always contains mostly log end pixels. In principle the only difference
to our first approach is that the regions are no longer pixel-columns, but
square cells.

The algorithm is described in detail below:

1. The image is divided into square 24 x 24 pixel disjoint cells. The optimal
cell size was found by experimenting with different sizes.

2. Starting from the bottom row, and moving up one row at a time, the
number of bright pixels in each cell in the current row is counted.

3. The cell with the largest number of bright pixels is a candidate for the
location of the log end. If at least 60 % of the pixels in that cell are
bright, the algorithm stops, and the log end has been found. Otherwise
the algorithm continues on the next row.

4. Only a given number of rows will be searched. If the number of bright
pixels in the candidate cell in the last row is not above the threshold, no
log was found from the image.

a b
Figure 11. (a) Image of a log that passes the cameras slightly askew. (b) Illustration of the
frame selection algorithm operating on the image.

Figure 11 shows an image of a log that passes the cameras slightly askew.
The red grid in the right hand-image shows the cells that the algorithm has
analyzed. Pixels whose RGB values were within the lower and upper bounds
have been tinted blue in the right-hand image. In the second lowest row none
of the cells had enough blue pixels, but the algorithm has stopped in the third
row. The approximate location for the log end is the ninth cell in the third row.

 38

The essential enhancement to our first approach comes from the fact the log
end is usually below other large areas of bright pixels. Once the log end is
found, the search stops before examining other bright areas above.

The end of the log, which is of most interest with regard to grading, will be at
the center of the chosen image. If the log end is too dark, for example be-
cause of clay, the log is usually found from the next row, because the top of
the log reflects bright light to the camera. We set an upper limit for the num-
ber of rows that will be searched, so that if there is no log in the image, the
algorithm will not continue to the bright areas in the surroundings.

Finally, we made a minor improvement by changing the algorithm to operate
on RGB color, instead of brightness, of each pixel. We set lower and upper
limits for the red, green, and blue components. The upper limits were set to
exclude pure white in order to distinguish wood colors from snow and the
shiny metallic surface of the transfer conveyor. Using lower limits for each of
the RGB components makes some level of distinction between dark wood
and equally bright but different colored background possible.

5.2 Discussion
This algorithm works very accurately. If a better precision was needed, the
algorithm could be enhanced to detect logs based on changes between adja-
cent frames. That would make the algorithm only slightly more complex and
slower. If a frame was subtracted from the next frame and there was a log in
both the frames, most likely the position of the log in the first frame would
contain negative pixels, and the position of the log in the second frame would
contain positive pixels, while other areas would be close to zero.

 39

6 LOG IMAGE SEGMENTATION

6.1 Selecting a segmentation method
Our grading algorithm determines the internal quality of the wood from the
cross section of the log. Thus the only region it needs to examine is the circu-
lar region that outlines the end of the log that is closer to the camera. The
objective of the segmentation algorithm that we will develop in this chapter,
and the log end recognition algorithm that will be developed in the next chap-
ter, is to localize the log end region inside the log images.

Strategies for image segmentation were reviewed in Chapter 4. Basically our
segmentation algorithm is required to classify each pixel into one of two
classes: those lying inside the log end region and those lying in the back-
ground. The former class is referred to as object class in our discussion. The
easiest starting point for log end localization is a pixel-based segmentation
technique that classifies each pixel individually based on its color. Since the
background of our log images is generally dark, it is reasonable to suspect
that color could discriminate between log end and background.

Another option would have been to use region splitting and merging. It is only
slightly more demanding to implement, but enables to use a homogeneity
criterion that is not limited to the color of individual pixels. The problem with
region growing, as well as with sequential edge detection methods, is that
they require an initial seed point, which might be given by a user in interac-
tive applications. Our segmentation algorithm is required to operate unsuper-
vised, so other means for initializing the region growing would have to be de-
veloped.

Using sequential or parallel edge detection methods for segmentation tends
to be rather complicated. They are generally not able to segment images by
themselves, but have to be combined with other segmentation approaches
[11]. Edge detectors give useful information for image understanding, but we
are not interested in analyzing every part of the image. An edge detector ap-
plied on a log image would produce a vast amount of edges that would not as
such help us to localize the log end.

Physics-based approaches are substantially more complicated than region-
based or boundary-based segmentation algorithms that simply operate on
color. The simple physical models can be used to detect material changes,

 40

but they regard discontinuity in color as two different materials [35]. This is
unacceptable, since logs are far from single-colored objects.

Maxwell and Shafer have developed a complex framework for segmentation
of images into regions that correspond to coherent, possibly multicolored,
surfaces in the scene [35]. Still the objects in the scene are required to be
piecewise uniform dielectrics. Log material is often not uniform (see Figure
12), but contains complex texture, and possibly off-color, rot, snow, or clay.
Thus physics-based approaches are not expected to perform best in this
case.

a b
Figure 12. Log end images. In practice the log ends are often of rough and inhomogene-
ous material.

In Chapter 4 a pixel-based classifier was developed for finding an approxi-
mate horizontal location of the log. The algorithm searched for pixels whose
color is inside the cubic subspace of RGB color space defined by lower and
upper limits for the red, green, and blue coordinates. To be able to grade the
log, the log end has to be found precisely. Thus we started looking for a color
space where the log end could be more precisely discriminated from the
background.

6.2 HSV wood color model
We have to specify the color subspace that contains as much wood color,
and as little background color as possible. The algorithm then scans through
the image and assigns the pixels that have color in the specified subspace to
object class. A color subspace that accurately discriminates the log end from
the background may be easier to define in some coordinate systems than
others.

 41

We analyzed existing log images and observed that in HSV coordinate sys-
tem the hue component remains fairly constant in log end pixels, but value
component varies considerably from log to log. In such case color normaliza-
tion [36] is often used so that chromaticity can be compared independently of
brightness:

BGR
Rr
++

= (21)

BGR
Gg
++

= (22)

For example, because the skin colors of different people vary mostly in
brightness rather than in chromaticity, some face tracking systems use nor-
malized RGB color [37]. Essentially same effect is achieved if RGB color is
transformed to a perceptual color space and the brightness component is
ignored [38]. While computation is slightly more efficient in a two-dimensional
color space, some information is obviously lost—it is no longer possible to
use brightness to classify pixels. Normalized RGB color space has the addi-
tional flaw that low intensity colors are very noisy [11].

We did not want to ignore brightness completely, so we started experiment-
ing with a model where the log end color is defined by giving lower and upper
limits to each of the three HSV components. The ranges were chosen by
analyzing existing log images; the range was very narrow for hue, and wider
for saturation and value. The conversion from RGB to HSV color space is
discussed in Appendix C.

With a large, heterogeneous set of logs, a color subspace defined by mere
lower and upper limits for each component grows too large, and background
pixels will be incorrectly assigned to object class. We tried to increase the
accuracy by creating a list of reference colors and detecting pixels whose
color is close to some of the reference colors. We selected manually the ref-
erence colors from log images. At first the Euclidean distance was used as a
measure of similarity, and later we set three parameters that limit the dis-
tance of each color component from the closest reference color. The program
then compared each pixel to each reference color.

 42

6.3 The final wood color model

6.3.1 Wood species
With different wood species included, the list of reference colors became too
large to maintain, and the segmentation algorithm still was not accurate
enough. Especially bark has often color that is similar to the color of a dark
log end. Using a single color subspace to identify logs of every species re-
sulted in too many background pixels incorrectly assigned to object class.

We needed a priori information about the wood species. Fortunately such
information exists. We are able to read the species of the logs in each batch
from a database. The final algorithm uses different color subspaces to repre-
sent the color of spruce, pine, birch, and aspen, and combined data in case
the detection of the wood species fails.

6.3.2 Adaptive membership tables
The final segmentation algorithm still uses pixel-based classification. How-
ever, reference colors are not manually written to a configuration file any-
more. A separate application is used to train the classifier. The application
examines training patterns and calculates three-dimensional membership
tables for the classifier.

The training patterns have been manually cropped from hundreds of existing
log end images and organized into training sets. For each sort of wood, and
for each of the two cameras, two training sets were collected: object set,
which contains log end patterns, and background set, which contains mostly
bark. We collected separate training sets for the two cameras because light-
ing and geometry might slightly differ between the cameras. However, we
came to the conclusion that a single membership table can be used for both
cameras.

The membership tables are indexed by three color component values. In
mathematical terms they define a mapping from the color space to a set of
classes. In this case there are only two classes: object and background. The
classifier decides the class to which each pixel should be assigned based on
the table that has been created for the particular wood species. Because the
mapping can be precisely defined with discrete color values, the conversion
to HSV color space becomes pointless. Therefore we keep the image data in
RGB color space, and use the RGB color vectors as indices into the mem-
bership tables.

 43

The membership tables are built from the three-dimensional histograms of
the training sets. It should be noted that because the histograms of log end
and bark overlap, it is not possible to perfectly discriminate the log end from
the background by comparing individual pixel colors. The best that we can do
is to find out which colors appear more frequently in log end pixels than in
background pixels.

The color resolution of the membership tables is determined by the quantiza-
tion of the indices. 24-bit RGB vector would provide more than enough color
resolution—one table would occupy a large amount of memory (16 million
elements), and a large amount of training data would be needed to get reli-
able values for every element. To store the color table more efficiently we
use a different encoding for the indices that takes only 19 bits. Thus the table
size is reduced to half a million elements.

We noticed that in general the R, G, B components of wood colors are close
to each other (saturation is low), and R > G > B. A table index contains G as a
measure of the overall brightness. Chromaticity is encoded as the differences
G – R and G – B. Because brightness is not important for detecting wood
color, we use the 5 most significant bits of G, and 7 most significant bits of
each of the differences. Conners et al. developed a system for detecting de-
fects in hardwood lumber [9]. They decided to use only the red and blue
channels of color images for segmentation. Although it was not justified in
their paper, the decision was probably based on the same observations that
the difference is greatest between the red and blue components.

6.3.3 Bayes classifier
The classifier that minimizes the average loss incurred in assigning a feature
vector to a wrong class is called the Bayes classifier [2]. In our classifier the
feature vector is a pixel color and the class is either object or background.
We will assume that the loss of classifying a pixel incorrectly always equals
to 1, so that the total loss equals to the number of misclassifications. Be-
cause we have only two classes, the average loss incurred in assigning a
pixel incorrectly to one class reduces to the probability that the pixel actually
comes from the other class.

The application that builds the membership tables counts the occurrences of
each color in object and background training sets. The number of occur-
rences of color (R, G, B) in object and background training images are de-
noted by no(R, G, B) and nb(R, G, B) respectively. The probability that a ran-

 44

dom pixel of which only its color is known belongs to object or background
class can then be estimated from those numbers:

),,(),,(
),,(

),,(
BGRnBGRn

BGRn
BGRp

bo

o
o +

=
(23)

),,(),,(
),,(

),,(
BGRnBGRn

BGRn
BGRp

bo

b
b +

=
(24)

The Bayes classifier would assign a pixel to object class if po(R, G, B) > pb(R,
G, B) and vice versa. From Equations (23) and (24) can be seen that po(R, G,
B) > pb(R, G, B) if and only if no(R, G, B) > nb(R, G, B).

6.3.4 Fuzzy regions
There is often uncertainty associated with the regions that a segmentation
algorithm produces, but the algorithm simply partitions the image to the best
of its ability. Segmentation is a low-level task that is followed by other proc-
essing, so the decisions will affect all the higher-level activities. If the higher-
level algorithms are not able to use the information about the uncertainty of
the regions, the final output of the system will be biased by the low-level de-
cisions. [11]

The idea behind fuzzy segmentation techniques is that the membership of
each pixel in each object is vague, and the information of its uncertainty is
retained to higher levels. Often the edges in an image are not crisp, and the
higher-level algorithms have more flexibility, when the region boundaries are
not fixed in the first step. [11]

To facilitate fuzzy decisions to some extent, we wanted to store in the color
tables the degree to which we are confident that a pixel of color R, G, B is
part of the log end, instead of just the Boolean value that indicates whether
no(R, G, B) > nb(R, G, B) is true or not. The confidence is higher if there are
more samples of that color in the training data, and if there is a greater differ-
ence between no(R, G, B) and nb(R, G, B).

The class to which a pixel belongs can be decided based on the difference of
the numbers, and the magnitude of the difference reflects the confidence of
the membership. Because the total number of samples in the training data
would otherwise affect the magnitude of all the decision table values, we
normalize the differences so that they are not greater than 1. The following
membership function assigns each pixel to one of the two classes:

 45

[]),,(),,(max
),,(),,(

),,(
,,

BGRnBGRn
BGRnBGRn

BGRm
bobgr

bo
o −

−
=

(25)

The membership tables we obtained for each of the wood species using the
membership function are visualized in Appendix D. Our segmentation starts
by scanning the image and classifying pixels according to the membership
values. A positive membership value suggests that the color appears more
often in log end than in bark. Such pixels will be classified as belonging to
object class. The fact that the membership function employs color information
as a whole makes this method essentially different from the approaches that
operate on one component at a time.

6.4 Discussion
Assuming that the loss of misclassification always equals to 1, the algorithm
is optimal pixel-based classifier in the sense that it minimizes the average
loss in misclassifications. An assumption that we have made in Equations
(23) and (24) is that the training data is representative of all the pixels in an
image. We have added more training data when we have noticed that some
colors are not classified correctly. The result is that there is relatively more
log end pixels in the training data than in the actual images, but the classifi-
cation works in practice. Limitations of the algorithm include inflexibility to
changes in the environment, for example in lighting conditions.

6.4.1 Region-based segmentation
In a constant environment the segmentation algorithm performs as well as
classification based on individual pixel colors can perform. The next im-
provement could be a region-based segmentation algorithm with homogene-
ity criteria that consider a larger neighborhood than a single pixel.

As we mentioned earlier, physics-based approaches are not designed for
objects that are not uniformly colored. An interesting subject for future re-
search would be to study the statistical properties of the log end regions in
order to find similar regularities from the histograms of individual logs that
physics-based approaches use to detect regions that correspond to a single
material. We have already collected image data of log ends, but so far we
have only combined the data of different logs into a single histogram. Log
end might be located with a region-based approach, such as region splitting
and merging, using a homogeneity criterion that sets constraints on the
shape of the histogram of each region.

 46

Textural features could be used for region-based segmentation as well.
However, they are computationally expensive and might be feasible only for
classification after potential defect areas have been found [4]. We give ex-
amples of textural features that could be measured when we discuss classifi-
ers in Section 8.2.2.

6.4.2 Combining different segmentation algorithms
Region growing and sequential edge detection methods require an initial
seed point. In an unsupervised application the seed points either have to be
chosen randomly or by another algorithm. Some approaches use the infor-
mation obtained from an edge detector to initialize region growing [12]. Be-
cause our segmentation algorithm is only required to outline one region in the
image, edge detectors do not lend themselves as the basis of our segmenta-
tion algorithm. A better approach could be to use our pixel-based classifier to
seed region growing.

Another way to combine information from region-based and boundary-based
algorithms is by using the result of one algorithm to guide the homogeneity
decision of another. Region splitting and merging, or region growing, can use
homogeneity criteria that in addition to the other criteria constraints that a
region is not homogeneous if it contains edge points. Edges and regions can
also be detected independently and boundaries that were not detected by
both methods can be removed in post processing. [12]

Those approaches essentially combine a region-based and a boundary-
based algorithm that would result in over-segmentation, i.e. produce too
many boundaries, if either of them was used alone. Because a larger prob-
lem with our segmentation algorithm is that noise and irregular wood texture
causes coarse boundaries, it would be particularly interesting to use another
algorithm to refine the already detected boundaries.

The snake method is commonly used for locating the object boundary by re-
fining an initial plan. It tries to minimize an energy function that is calculated
by integrating over the length of the boundary. Typically the energy function
depends on the smoothness of the contour and on the image gradients. In
our case the membership function might also be used in the definition of the
energy function. [39]

 47

7 LOG END RECOGNITION

7.1 Region size constraint
The segmentation algorithm assigns each pixel of the image to either object
or background class. The result is stored in a registered binary image con-
sisting of labels. Because wood color alone cannot discriminate the log end
from the background perfectly, small isolated clusters of background will be
given object label. The most intuitive solution is to discard regions of object
labels that are smaller than some threshold.

To calculate the sizes of the regions, an algorithm that divides the object la-
bels into connected components is needed. We implemented a connected
components algorithm based on the description and source code given by Ali
Rahimi [40]. It uses the disjoint-set forest data structure, described in
Appendix E.

The disjoint-set forest is used to group pixels into connected components.
The algorithm maintains a two-dimensional table, of the same size as the
image, which contains pointers to the elements of the disjoint sets. When the
algorithm finishes, every element of the table contains a pointer, and each
disjoint set corresponds to one connected component of the image. If a set of
pixels is connected, the corresponding pointers in the table all point to ele-
ments of a single set.

First connectivity has to be defined. Two pixels are connected if they are ad-
jacent and homogeneous according to some criterion. Adjacency can be de-
fined so that only horizontal and vertical neighbors are adjacent (4-
adjacency), or so that also the diagonal neighbors are adjacent (8-adjacency)
[2]. A connected component is then a region of an image such that every pair
of adjacent pixels inside the component is connected, but none of the pixels
inside the component is connected with a pixel outside the component.

We define homogeneity using the membership function given in Equation
(25)—two pixels are homogeneous if they both have a positive membership
value, or if neither of them has a positive membership value. We chose to
use 8-adjacency. If a region has a coarse boundary because of noise, 4-
adjacency may incorrectly detect some border pixels as separate regions.

 48

In Figure 13 there are two disjoint
sets with three elements, A, B, and
C. The sets are represented by
trees in the disjoint-set forest and
elements are nodes in the trees. A
and B are nodes of a single tree. B
is the root of the tree, so A contains
a pointer to B. C is the only node of
the second tree. The connected
components of the 4 × 2 pixel im-
age have been extracted, so there
is a pointer at each pixel to either A,
B, or C. Because 8-adjacency is
used, the trees group the pixels into
two components.

B

A

C

The algorithm needs only one pass
to find the connected components
and another pass to label the pixels. The image is scanned pixel by pixel. Let
S denote the set of pixels that have already been scanned. If the current pixel
is not connected with any of the pixels in S, a new set is created into the dis-
joint-set forest, and a pointer to the only node of the created tree will be
stored at the current pixel. If pixel p ∈ S is connected with the current pixel,
the same pointer that is stored in p will be stored at the current pixel. If there
is also another pixel q ∈ S that is connected with the current pixel, the nodes
to which there are pointers at p and q will be linked causing the nodes to be-
come part of a single set.

Figure 13. When the connected components
algorithm finishes, each tree in the disjoint-
set forest corresponds to one connected
component of the image.

The 4 × 2 pixel image in Figure 13 has been scanned from left to right, from
bottom to top. During the first row three disjoint sets have been created, each
of which contains one element, A, C, and B. A pointer to B has been stored
at the rightmost pixel of the first row, because the pixel is connected to the
previous pixel. Similarly a pointer to A has been stored at the first and second
pixel of the second row. However, since the second pixel of the second row
is connected to the third pixel of the first row, the elements A and B have
been linked. Consequently all the pixels that point to either A or B are part of
the same component. Because 8-connectivity is used, a pointer to C has
been stored at the last two pixels.

 49

Because the disjoint-set trees are not going to be modified after the image
has been scanned, set-specific information may be stored in the root nodes.
We store a unique number in each root node to identify the connected com-
ponents. The image is then scanned for the second time and each pixel is
labeled with the number that is found from the root node of the corresponding
disjoint-set tree.

The histogram of the label image gives the areas of each of the connected
components. Our first implementation simply disregarded the regions that
covered a too small area on the grounds that they are most likely just isolated
pixels of background or bark that accidentally have the same color as log
ends tend to have. Now we can use the membership values to adjust the de-
cision as to which regions to disregard. We define the size of a region as the
integral of the membership values over the pixels in each region. We discard
all the regions whose size is less than 0.1 times the size of the largest region.
The decision will then be affected by both the size of each region and the
degree to which its color matches log end color.

7.2 Region shape constraint
Especially problematic regarding the log end recognition is that large regions
of bark often get assigned to object class. Often discrimination based on
connected components fails inevitably because these regions are connected
to the log end. Therefore we started looking for more ways to make use of
the geometry in the scene. The size and the location of the log changes from
image to image, but it can be localized on the grounds of its shape.

The cross section of the log should be more or less circular. Defects in wood
may have different color than healthy wood, so we cannot assume that the
entire log end will be assigned to object class. Usually rot appears at the cen-
ter of the cross section and the circumference is healthy wood, as in the log
end in Figure 2(b). However, it is also possible that a defect divides the pixels
that will be assigned to object class into two separate regions. Fortunately we
know that a peculiar shape usually indicates defects in the wood and the log
can be marked as failed without further processing.

In Chapter 8 we will develop an algorithm that uses features of the pixels that
have been classified as object pixels to find evidence of defects. Initially we
had to calculate the convex hull of the object labels so that any defected inte-
rior of the log end would be assigned to object class as well. The output of
the algorithm that we developed for finding circular clusters of object labels is

 50

the location and the radius of the circle. Thus it is not necessary to calculate
the convex hull anymore. After the best candidate for location and radius is
found, we will use another algorithm to examine if the circle really represents
majority of the log end pixels. If the circle appears to cover only a small por-
tion of the log end, the log will be marked as failed.

Template matching is under some constraints optimal solution for the prob-
lem. Template matching has been extensively used to localize and identify
patterns in images [41]. The principle is to evaluate the similarity of a known
template—in this case a circle—with the image data at different locations. A
commonly used measure of similarity is correlation [2]:

∑∑ ++=
s t

tysxwtsfyxc),(),(),((26)

In the above equation f(x, y) is an image and w(x, y) is the template. The re-
sult, c(x, y), is a measure of the similarity of the template with the image at
location (x, y). If the image and the template are regarded to as vectors, cor-
relation gives the dot product of these vectors. Hence correlation can be
seen as the angle between the two vectors [41].

Correlation is also the optimal linear spatial filter for detecting a pattern in the
presence of additive white Gaussian noise, in the sense that it maximizes the
signal to noise ratio at the location of the pattern [41]. Unfortunately correla-
tion may become impractical because of the required amount of computation,
if the size and orientation of the template is unknown [2]. Although a circle is
invariant under rotation, we would have to compute the correlation with cir-
cles of different sizes.

We first experimented with a simple algorithm that makes use of the fact that
the log end is usually below other regions that have been assigned to object
class. The algorithm starts from the bottom of the image and calculates the
distance between the leftmost and rightmost object label on each row. When
the algorithm moves up, at the lower semi-circle of the log end region the
distance should increase, and at the upper semi-circle the distance should
decrease. The row where the distance starts to decrease is a good candidate
for the center of the log end.

If the circle has an irregular boundary because of noise, the distance could
momentarily decrease before the center of the log end. To avoid making

 51

premature decisions we compared the sum of distances from three consecu-
tive rows, and the algorithm continued until the distance had been lower than
the maximum for five times.

Frequently bark that has been assigned to object class makes the algorithm
presented above to fail, because the distance will not start to decrease at the
center of the log end. Figure 14(a) shows a log whose bark and inner wood
have similar colors. In Figure 14(b) the pixels that the pixel-based classifier
assigned to object class are tinted green. Chances are that the algorithm
would fail on the image because the upper-half of the region is not circular. In
the next section we will develop an algorithm that performs better in such
situations.

a b
Figure 14. (a) A log whose bark and inner wood have similar colors. (b) The region that the
pixel-based classifier assigned to object class is tinted green, and the result of the log end
recognition algorithm is tinted red.

7.3 The final log end recognition algorithm
The final algorithm we developed for recognizing the log end shape tries to
find the largest circle whose circumference contains mostly object labels. It
could be regarded as an approximation of template matching. Template
matching with binary images degenerates into counting the number of pixels
that equal to 1 in both the image and the template. To improve the perform-
ance we do not count all the object labels at the circumference, but take 27
samples; we examine the 3 × 3 neighborhood of three points at the circum-
ference. In addition we do not evaluate circles of every possible size at every
possible location.

Again the algorithm finds the leftmost and rightmost object label on each row.
One circle will be evaluated per row: the circle centered in the middle of the

 52

leftmost and rightmost object label whose diameter is the distance between
those pixels. The 3 × 3 neighborhood of three points, the top of the circle, 45
degrees left from the top of the circle, and 45 degrees right from the top of
the circle, will be examined. If there are object labels in all the three
neighborhoods, that circle is a candidate for log end location.

The algorithm starts from the bottom of the image moving up until the top of a
circle to be evaluated is above the image boundary. The result of the algo-
rithm is the location and diameter of the largest candidate. The right hand
image of Figure 14 illustrates the result of the algorithm applied on the left
hand image. The region that the pixel-based classifier assigned to object
class is tinted green and the circle found using the log end recognition algo-
rithm is tinted red.

After the circle has been found, its vicinity will be examined to verify that the
circle represents majority of the log end pixels. If there is a substantial
amount of object labels outside but not far from the circle, chances are that
the log end recognition has failed, and the circle only covers a small portion
of the log end. Therefore we count the number of object labels at the one-
pixel wide circumference whose radius is 1.75 times the radius of the de-
tected circle. If there are 25 or more object labels, the log will be marked as
failed without further processing. Finally, because it is more important that
there will be no bark in the object region than that all the log end pixels will be
detected, the radius will be multiplied by 0.9.

 53

8 CALCULATING EVIDENCE OF DEFECTS

8.1 Evidence function
When the log end has been found, we use statistical characteristics of the log
end pixels to calculate evidence of defects. Evidence is simply a nonnegative
number that indicates how certain the software is that the log contains de-
fects. In this phase the algorithm is not required to identify the type of the de-
fect.

The original requirements stated that each log should be labeled as passed
or failed. Thus the software labeled all the logs whose evidence was above a
certain threshold as failed. A person at the Mitla office graded all the failed
logs. However, it turned out to be difficult to find a single threshold that would
be optimal for every batch of logs.

The specifications were changed to provide for a more flexible operation: the
logs in each batch are shown to the grader in order of decreasing evidence.
That is, the logs that certainly contain defects will be shown first. As more
and more logs have been shown, defective logs will appear less and less
frequently. The grader can finish grading the batch when he or she believes
that at least almost all of the defective logs in the batch have passed already.

We extracted various statistical features of the log end pixels and tried to find
correlation between the feature vector and the presence of defects. The fea-
tures that we calculate are:

• A: The area of the log end.
• (x, y): The coordinates of the center of the log end.
• r: The radius of the log end.
• σ2: The variance of the intensity over the area of the log end.
• c: The relative lightness of the log end at the circumference, as described

below.

We found out that the following is a reliable formula for evidence of defects:

)(288 ryh +−= (27)

)0,30max(25.0),(−⋅= hryey (28)

)0,8max(10)(22 −⋅= σσσe (29)

 54

)0,05.1max(3000)(−⋅= ccec (30)

)0,10max(30)(rrer −⋅= (31)

)()()(),(),,,(22 receeryecrye ry +++= σσ σ (32)

Equation (27) calculates the distance of the bottom of the log end from the
bottom of the image (the height of the images is 288 pixels). The bottom of
the log end is usually very low in the image, so the distance increases evi-
dence. The color of clear wood varies only little. Thus σ2 increases the evi-
dence. The purpose of c is to measure how dark the center of the log end is
compared to the circumference. Most often rot appears at the center of the
log, making it darker. Therefore c also increases the evidence. A very small
radius probably means that only a small part of the log end has been de-
tected. If the radius is smaller than 10, the evidence is increased by 10 – r.
The coefficients define the importance of each component.

8.2 Discussion

8.2.1 Textural features
The classification is based on tonal features. That is, we use simple statistical
properties of the pixel colors to calculate the evidence. A better accuracy
could be achieved if textural features were used in addition to the tonal fea-
tures to calculate the evidence. Textural features are related to the spatial
organization of the colors.

As an example of a textural feature that has been used for defect detection is
the intensity co-occurrence function P(i, j, d, θ) [42]. It is defined as the rela-
tive frequencies with which two pixels whose intensities are i and j are at dis-
tance d from each other in the direction indicated by angle θ. All the parame-
ters are discrete values. For example, the angle can be quantized to 45° in-
tervals, in which case a natural distance metric is the Chebyshev distance
(also called the chessboard distance [2]) quantized to 1 pixel intervals. Then
for instance P(i, j, 1, 90°) would equal to the number of times two intensities i
and j occurred in vertically adjacent pixels in the given neighborhood.

Haralick et al. organized the co-occurrence values into matrices and com-
puted statistical features from these matrices [42]. The matrices are compu-
tationally expensive to calculate, but they have performed well in defect de-
tection [4].

 55

Österberg et al. [1] analyze the log end texture by computing the local Fourier
transform [2] in various points inside the log end. A neighborhood of each
point is transformed to the frequency domain. The dominating frequency and
its direction give estimates to the thickness and orientation of the annual
rings at that point. Those estimates can easily be determined when the two-
dimensional frequency spectrum is transformed to polar coordinates.

The method was able to find the position of the center of the annual rings,
and draw annual ring density and orientation maps. There is a relation be-
tween the annual ring density and the strength of the wood. Annual ring den-
sity and orientation maps can also be used to detect defects. Using their al-
gorithm more information about the quality of the wood could be acquired,
but the algorithms are slower and require that the log end is more or less
clean and does not contain more than a moderate amount of defects. A com-
bined system could try to analyze the annual rings of logs where they are
clearly enough visible.

8.2.2 Learning classifiers
The evidence is calculated in the interactive application that graders use from
the features that the unsupervised application extracts. Currently Equation
(28) is fixed and the coefficients were determined manually. An algorithm that
could learn from user input would be interesting. The algorithm could auto-
matically try to find correlation between the statistical features and the correc-
tions that the human grader makes, and learn to interpret the features cor-
rectly.

Constructing the Bayes classifier requires that the probability density func-
tions of the feature vectors in each class, as well as the probability of occur-
rence of each class, are known [2]. When the exact PDFs are unknown, the
Bayes classifier can be constructed if assumptions of the shape of the PDFs
are made, such as that the distribution is Gaussian with certain mean and
standard deviation. One approach is to estimate these parameters from the
training data.

A classifier that is able to learn from training data, but does not require any
assumptions about the features, is the multi-layer perceptron. MLP is a feed-
forward neural network with three or more layers. It has been used exten-
sively in wood defect detection, among other applications, with good per-
formance [4].

 56

Basically an MLP consists of computing nodes, called neurons, each of
which calculates the value of a decision function that is based on the linear
combination of input values. A feature vector is connected to the inputs of the
first layer of neurons. The outputs of the first layer of neurons are connected
to the inputs of the second and so on. The final layer of neurons gives the
output of the system. Each output corresponds to one class. [2]

Each neuron contains a parameter that affects its decision. Those parame-
ters define the response of the neural network with a given input. The values
of the parameters are established iteratively by training the network. Many
different training algorithms have been proposed. [2]

It has been shown that the back propagation training algorithm gives the pa-
rameters to any MLP that minimize the mean square error to the Bayes deci-
sion function. Furthermore, each output of the MLP will approximate the
probability of the input vector in the corresponding class. In other words the
MLP is a method for approximating the PDFs of feature vectors in a set of
classes. The accuracy of the approximation depends on the architecture of
the network. [43]

 57

9 DOUBLE FEED DETECTION

9.1 Detecting images with two or more logs
Occasionally the step feeder lets two or more logs on the transfer conveyor
simultaneously. In those cases the person grading the batch has to manually
add an extra log to the database. For that reason double feeds have to be
detected and shown to the grader whether they contain defects or not.

A double feed is easiest to notice from the image of the overhead camera. It
has been installed higher than the two cameras that take images from log
ends, and gives a general image of the transfer conveyor. The algorithm
uses only pixel intensities. The logs can be fairly well separated from the
background by thresholding.

First an averaging filter is applied on the intensity image. Averaging filters
can be used to blend small details with the background and make larger ob-
jects more discernible [2]. Usually the logs appear vertically in the image, so
the average is calculated over a region that is larger in vertical than in hori-
zontal direction. We use linear spatial filtering with a 6 pixels wide and 8 pix-
els high filter mask, whose all coefficients equal to 1. At the end each pixel is
divided by 48. Thus each pixel is replaced by the average of its 6 pixels wide
and 8 pixels high neighborhood.

Our intention is to count the number of scan lines in the overhead image that
contain pixels from both logs. In case there are scan lines that contain two or
more disjoint sequences of bright pixels, the sequences probably come from

a b
Figure 15. (a) A double feed that can be detected using our algorithm. (b) The averaged
intensity image with bright areas tinted red and the scan lines that contain bright pixels
from both logs tinted green.

 58

different logs, or there is a fork in the log. In either case the images should be
shown to the grader. Figure 15(a) shows an overhead image of a double
feed. The white areas on the transfer conveyor are snow. In Figure 15(b) the
image has been averaged, bright pixels have been tinted red, and scan lines
that contain bright pixels from both logs have been tinted green.

One of the shafts of the transfer conveyor was too bright, so we painted it
black. Also, snow forms blocks of bright pixels, but the shape of the blocks is
essentially different from that of the logs. We use the same connected com-
ponents algorithm that we described in Section 7.1, and calculate features
that describe the shape of each region to discriminate between logs and
blocks of snow:

• w: The width of the bounding
rectangle, i.e. the horizontal
distance between the leftmost
and rightmost pixel.

• h: The height of the bounding
rectangle, i.e. the vertical dis-
tance between the uppermost
and lowermost pixel.

• A: The area of the region.
• t: The thickness of the region,

as described below.

The shape of the log in the over-
head image is long but narrow.
The snow blocks on the other
hand are usually wide, but the
chains of the transfer conveyor
limit their height. The thickness
feature tries to capture this differ-
ence.

A h

w

l

d

Figure 16. Features describing the shape of
the log region.

Assuming that the region has a rectangular shape, we define two measures,
d and l that estimate the diameter and length of the region respectively. Their
definition is derived from the geometry in Figure 16:

22 hwl += (33)

 59

22 hw
A

l
Ad

+
==

(34)

We define thickness as the ratio of d to l:

22 hw
A

l
dt

+
== (35)

Regions that are long and narrow have smaller thickness than short and wide
regions. Square regions have maximal thickness, tmax = 1 ∕ 2. The algorithm
accepts only regions that have small thickness: t ≤ 0.185. Thickness is an
unreliable discriminator when the region is small. Therefore we set a lower
limit on the height of the region: h ≥ 25 pixels.

The double feed detector has performed somewhat accurately, but it is evi-
dent that the algorithm is not foolproof. Situations when the algorithm usually
fails are listed below:

• Two logs enter the transfer conveyor side by side, so there are no rows in
the overhead image that contain pixels from both logs. As an example of
such image, see Figure 17(a).

• The logs are horizontally so close to each other that there is only one
bright area. In Figure 17(b) there are only few dark pixels between the
bright logs.

a b
Figure 17. Double feeds that may not be detected using our algorithm. (a) The logs enter
the transfer conveyor side by side. (b) The logs are so close to each other that they appear
as a single bright area.

 60

• One of the logs has turned 90 degrees. The logs form a cross in the over-
head image, so that most scan lines contains at most one continuous se-
quence of bright pixels.

9.2 Discussion
Ideally the size of the log in the overhead image would not depend on its po-
sition on the transfer conveyor. Unfortunately physical limitations force us to
use a lens whose focal length is very short. As a result the images suffer
from keystone distortion. That is, logs in the other end of the transfer con-
veyor are smaller than logs near the camera. In addition there is strong radial
distortion in the images. The image could be transformed to a coordinate sys-
tem that corresponds to the surface of the transfer conveyor, if the mapping
from the image pixels to the surface locations was known.

The process of determining a mapping between world space points and the
locations on the image plane where those points will be projected to is called
camera calibration [44]. Usually the calibration involves taking images of cali-
bration planes. As stated in Appendix A, assuming the simple pinhole camera
model, the image plane point (u, v) where a world space point (x, y, z) is pro-
jected to is given by a matrix multiplication:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
z
y
x

s
sv
su

T (36)

The unknown 3 × 4 element transformation matrix T defines the mapping
from the world space to the image plane. We are interested in the back-
projection problem, i.e. given an image plane point we want to know the cor-
responding world space point. Naturally

T

TT is not invertible, since a world
space point anywhere in a single line of sight will be projected to a single im-
age plane location. Fortunately we can restrict the world space points to loca-
tions (x, y) in a coordinate system that spans the surface of the transfer con-
veyor. When nonlinear lens distortions are neglected, the transformation re-
lating (x, y) to (u, v) can be described by a perspective transformation [45],

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
v
u

s
sy
sx

U , (37)

 61

where U is a 3 × 3 element transformation matrix. The camera could be cali-
brated using coordinates taken from known locations on the transfer con-
veyor. Given n calibration points whose locations pi, on the surface of the
transfer conveyor, and their corresponding image plane locations qi are
known, we can form the system

[] []421421 qqqUppp = . (38)

Matrix U can be solved in the least squares sense using the matrix pseudoin-
verse [44]. If the second order terms of the measured image locations were
used in the parameterization (qi = [u2, uv, v2, u, v, 1]T), and the matrix U were
3 × 6, the model would account for other kinds of lens distortions as well [45].

 62

10 RESULTS

10.1 Practical concerns
The system has been developed in cooperation with the graders who use it
at the wood handling station. It was surprising how many practical concerns
had to be solved before the system could be used, even though in ideal con-
ditions the problem would be relatively easy to solve using well-known algo-
rithms.

Feedback of the current version has been positive, although the delay
caused by the software is an issue. The software is able to process 33 logs
per minute on a 2.8 GHz Pentium 4 computer. The algorithm is quite fast,
considering that the software has to process both log end images and detect
double feeds. However, as described in Chapter 3.5, there are still unsolved
real-time problems that prevent us from running the defect detection while
logs are being photographed. That is the main cause of the delay.

10.2 Defect detection
The original specifications, given in Chapter 1.2, stated that the software la-
bels each log as passed or failed and a person grades all the failed logs. The
final version gives more flexibility to the grader: the logs in each batch are
shown in order of decreasing amount of evidence of defects, and the grader
can choose to stop at any time. It is up to the grader’s judgment to stop when
defects occur so rarely that it is futile to continue manual grading. The rest of
the logs are assumed to be free of defects. The price of the flexibility is that
measuring the performance of the defect detection is difficult.

We made a small modification to the interactive grading application to collect
some statistics over a period of two and a half months. Because the defect
detection is not able to run while logs are being photographed, it may take
several hours after the measurement system has processed a batch, before
the defect detection is ready. Sometimes the grader chooses to grade the
entire batch instead of waiting for the automatic defect detection to finish.
Batches that had been graded entirely manually were excluded from the de-
fect detection statistics, leaving us statistics from 128 batches.

The application records the logs that the grader chooses to view. They can
be regarded as failed logs in a sense similar to the failed logs of the original
specifications—according to the judgment of the software they are the logs
that contain most likely defects. However, the grader has to view more logs

 63

than just the ones that the software considers defective: logs whose dimen-
sions do not meet the specified standards, as well as double feeds, have to
be graded in any case. They are displayed first regardless of their defect de-
tection results.

There were 153 logs on average per batch, of which the grader had chosen
to view 39.4 logs per batch. Each batch contained an average of 23.3 logs
that were either detected as double feeds by the software, or whose dimen-
sions did not meet the specified standards. To calculate the performance
measures that were specified in Chapter 1.2, we would need to know which
logs actually contained defects. We were unable to collect such statistics, but
after several iterations of evaluation and development, the users acknowl-
edged that the current version performs with adequate accuracy.

10.3 Double feed detection
We were able to obtain a list of logs that the graders have added to the data-
base, and therefore the performance of the double feed detection could be
evaluated. The statistics were gathered from 387 batches of logs. On aver-
age 2.53 logs per batch were detected correctly as a double feed and the
grader had inserted a new log.

On average 0.243 logs that were inserted had not been detected as a double
feed by the software. However, the graders did not always view all the logs in
the batch, so there are probably some double feeds that neither the software
nor the grader had detected. The opinion of the graders was that especially
birch causes double feeds that the software does not always notice, but they
are mostly situations where software detection would be difficult, and it would
be more feasible to correct the flaw in the step feeder than try to improve the
software.

On average 1.47 logs per batch were detected as a double feed by the soft-
ware, even though no logs were inserted by the grader. The misjudgment
was often caused by sunlight that was let into the room. Then again, the
grader had not always inserted a log in the database even though the judg-
ment of the software had been correct, such as in the case of a fork.

 64

11 CONCLUSION
Computer vision can be a valuable tool for grading wood in various stages of
the production chain from a forest to a finished product. In a measurement
station where the photographing conditions are relatively good, computer
vision can provide useful information even if the logs are untreated and regu-
lar low-end cameras are used.

We have implemented a computer vision system that reduces the work load
of a human grader by automatically detecting the logs that clearly do not con-
tain any defects. The system is in industrial use in Stora Enso wood handling
terminal in Uimaharju. In order to be of practical use the software that we im-
plemented was required to select from a sequence of frames the one where
the log end appears, localize the log end from the image, examine the log
end to detect defects, and detect possible double feeds.

The main contribution of this thesis was the application of well-known algo-
rithms to a practical situation. Defect detection was separated into a real-time
and a non-real-time component. Especially in real-time software simple and
well known algorithms are still often preferable.

We used an image segmentation algorithm that is based on detection of
wood color. Knowledge of the shape and orientation of the logs was used to
discriminate the log end from the bark. Uniform and intensive illumination
helps to detect defects. The images were taken in a generally dark environ-
ment, but especially snow complicates the log recognition in winter. The sys-
tem was designed to tolerate lower quality images. However, because the log
end may be dirty, this method will never be perfectly accurate. All the logs
that the unsupervised software is unable to understand will be shown to a
human grader.

The new software does not deliver any new information, but reduces the me-
chanical work that has so far been done by a human grader. There are
methods that provide more information, but usually they demand a better im-
age quality and their installation costs more. The speed of the grading algo-
rithm may also be an issue.

The next step could be identification of the type of the defect. It is also plau-
sible that the accuracy at which the defects are detected could be improved
to reduce the work load of the human grader even more. Maybe in the future
even in demanding environments more information can be acquired that en-

 65

ables more accurate sorting of logs according to their quality and delivers a
better value yield. With a computer vision system integrated into a harvester,
the cutting of trees could be optimized and the logs could be sorted already
in the forest [1]. In such environments there is no a priori knowledge of the
wood species, lighting conditions may be worse, focusing the camera is an
issue, and localizing the log end is difficult.

 66

APPENDICES

Appendix A Camera model
Potmesil and Chakravarty present the basic law governing image formation
through a lens [46]. An object appears exactly sharp in an image, if the fol-
lowing equation holds:

FVD
111

=+ (39)

Here D is the distance from the lens to the object, V is the distance from the
lens to the sensor, and F is the focal length of the lens (Figure 18). If an ob-
ject were at infinity, its image would appear sharp at the focal distance be-
hind the lens. In practice the lens has to be focused by increasing the dis-
tance between the lens and the sensor. Parameter f in Figure 18 represents
focusing, i.e. the distance in additional to the focal length required to get a
sharp image of the object.

D

F

V

S

s

f

AOV

Figure 18. Image formation through a lens. An object is on the right side of the optical axis
(size S), and its image is formed upside down on the left side (size s). The yellow triangles
on the left side of the lens are similar.

The part of the world that is visible to the camera at any given time is called
field of view. Its extent can be measured as the angle between its horizontal
or vertical edges, called angle of view. A formula for horizontal or vertical an-
gle of view can easily be derived from Equation (39) using the geometry in
Figure 18, when S is considered as the maximum width or height of an object
that fits into the image, and D as the distance of the object from the lens:

 67

fF
s

V
s

D
S

+
==

(40)

D
SAOV

=
2

tan (41)

fF
sAOV
+

⋅= arctan2
(42)

However, for our purposes the interesting quantity is the ratio of S to D. Equa-
tion (42) shows that field of view depends on the size of the sensor, the focal
length of the sensor, and focusing. Because correct focusing depends on the
focal length, as well as the distance of the object, the ratio becomes quite
complex to calculate. From Equation (40):

s
fFSD +

= (43)

The two similar yellow triangles on the left side of the lens in Figure 18 give
another equation:

f
s

F
S
=

(44)

f
sFS =

(45)

Combining Equations (43) and (45):

F
f
FD +=

2

 (46)

FD
Ff
−

=
2

 (47)

Substituting into Equation (40):

FD
FF

s
D
S

−
+

= 2

(48)

The formula can be significantly simplified noting that f << F. The effect of
focusing to field of view is clearly insignificant with respect to the precision we
need. For example, assuming F = 50 mm, and D = 6 m, Equation (47) gives f

 68

= 0.42 mm. Approximation f = 0 (the lens is focused to infinity) yields a simple
equation for field of view:

F
s

D
S
= (49)

If the aperture size of a camera would be infinitesimally small, every object
appeared sharp regardless of its distance to the camera and regardless of
the distance of the sensor to the lens. This idealistic model is called the pin-
hole camera model. The pinhole model results in a simple relation between
world space points and the locations on the image plane where the world
space points will be projected to. Using homogeneous coordinates the map-
ping from the world space to the image plane can be expressed as a single
matrix multiplication [46]:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
z
y
x

s
sv
su

T (50)

Here (x, y, z) is the world space point, and T is a 3 × 4 element transforma-
tion matrix that depends on the location and orientation of the camera, and
the size of the viewing pyramid [46]. The corresponding image plane location
(

T

u, v) can be obtained by dividing each component of the resulting vector by
s.

Unfortunately every real camera has a finite aperture size. The image of an
object is sharp only if the camera is focused to the correct distance, i.e.
Equation (39) holds. A point light source at any other distance will be pro-
jected as a blurred circle on the camera sensor, called the circle of confusion.
The depth of the range where objects appear sharp, called the depth of fo-
cus, depends on how small circles the camera sensor is able to resolve. If
the circle of confusion is smaller than the resolving ability of the sensor, it will
be seen as a sharp point in the image.

Potmesil and Chakravarty derived a formula for depth of focus, based on the
commonly accepted standard that the human visual system is not able to
resolve areas whose diameter is smaller than 1 ∕ 1000 of its distance from the
eye [46]. The resolution of a CCD sensor is different from that of the human
retina. A captured image is sharp unless the circle of confusion is larger than
the size of one pixel in the sensor. The resolution of the images we take is

 69

384 × 288 pixels, and the size of the sensor in our cameras is 1 ∕ 3” (4.8 mm
x 3.6 mm), so the width of one pixel in the sensor is 3.6 mm ∕ 288 = 0.0125
mm (the height of a pixel is equally large, 4.8 mm ∕ 384). According to Equa-
tion (49), an area whose diameter is 0.0125 mm · D ∕ F, has a diameter of
0.0125 mm in the sensor. In other words, the CCD sensor cannot resolve
areas whose diameter is less than (0.0125 mm ∕ F) times the distance of the
area.

Potmesil and Chakravarty expressed depth of focus as the far (D+) and near
(D-) boundaries for the area that is sharp, when the lens is focused to dis-
tance D. Their formula is expressed below using the resolving ability of our
CCD sensor:

mm
F

n
FH

0125.0
⋅= (51)

H
D
DD
−

=+

1

(52)

H
D
DD
+

=−

1

(53)

H is the hyperfocal distance of the camera—it is the nearest distance, such
that if the lens is focused at that distance, the depth of focus stretches to in-
finity. It depends on the aperture size (the ratio of focal length to aperture
number, F ∕ n) and the permissible size for circle of confusion. Depth of focus
is the distance between the far and near boundaries:

22

22
DH
HD

DH
DH

DH
DHDOF

−
=

+
−

−
= (54)

There is no simple relation between distance, focal length, aperture size, and
depth of focus, but the following trends can be seen:

• Increasing distance yields greater depth of focus.
• Decreasing focal length yields smaller hyperfocal distance and greater

depth of focus.
• Decreasing the aperture size yields smaller hyperfocal distance and

greater depth of focus.

 70

Appendix B Linear spatial filtering
All the algorithms we developed perform in the spatial domain, as opposed to
the frequency domain. In other words, the operations are performed directly
on the pixels, instead of transforming the image first. Many elementary image
processing tasks can be performed using linear spatial filter. Linear filters are
often preferred, because their behavior has been extensively and theoreti-
cally studied. [2]

Linearity means that both of the following are true:

1. The result is identical if two images are first added together, and then
an operation is performed on the sum image, or vice versa.

2. The result is identical if the pixels of an image are first multiplied by a
constant and then an operation is performed on the image, or vice
versa.

This is expressed in the following equation, where H is a linear filter, a and b
are constants, and f and g are images: [2]

)()()(gbHfaHbgafH +=+ (55)

A linear filter that is defined over a local m × n pixel neighborhood is charac-
terized by an m × n element mask. Elements of the mask are called coeffi-
cients, and the response of the filter is the sum of products of the coefficients
and the corresponding image pixels, as shown in Figure 19. The value of
each pixel in the filtered image is given by the response of the filter over the
m × n pixel neighborhood of the corresponding location in the source image.
[2]

If w(x, y) is an m × n element mask and the source image is denote by f(x, y),
the following equation gives the result image g(x, y): [2]

∑ ∑
−

=

−
−=

−
=

−
−=

++=
2

1

2
1

2
1

2
1

),(),(),(

ms

m
s

nt

n
t

tysxftswyxg .
(56)

 71

f(x-1, y-1) f(x, y-1) f(x+1, y-1)

f(x-1, y) f(x, y) f(x+1, y)

f(x-1, y+1) f(x, y+1) f(x+1, y+1)

w(-1, -1) w(0, -1) w(1, -1)

w(-1, 0) w(0, 0) w(1, 0)

w(-1, 1) w(0, 1) w(1, 1)

3 × 3 element mask

3 × 3 pixel neighborhood
of the source image

Figure 19. A filter characterized by a 3 × 3 element mask is applied to a source image.
The value of the pixel at (x, y) in the resulting image is a linear combination of the corre-
sponding 3 × 3 pixel neighborhood of the source image, with the mask elements as coef-
ficients.

Equation (56) is not defined at the edges of the image. Sometimes it is ac-
ceptable that the filtered image simply becomes smaller than the original im-
age. Gonzalez and Woods give two other possible solutions: the image can
be filtered using only the section of the mask that falls inside the image
boundaries, or the source image can be padded by adding rows and columns
[2]. Both of them have identical results if the padding is done by adding ze-
ros. Some filters are designed to produce a small response over homogene-
ous areas. Discontinuity at the image boundary causes them to produce a
larger response even if the image is homogeneous. Thus it might be better to
pad the image by duplicating the outermost pixels [2].

 72

Appendix C Conversion from RGB to HSV color space
Conversion from RGB to HSV color space was derived by Smith [19]. Actu-
ally the HSV coordinate system Smith presented is not exactly cylindrical. It
was intentionally formulated so that the transformation from RGB does not
use trigonometric functions. Smith calls the coordinate system the hexcone
model. We present the algorithm here:

),,max(BGRV = (57)

),,min(BGR=Δ (58)

V
S Δ
= (59)

If saturation equals to 0, hue is not defined. Otherwise hue depends on the
order of majority of R, G, and B:

Δ
−

−=⇒>≥
GRHBGR 1 (60)

Δ
−

+=⇒≥>
RGHBRG 1 (61)

Δ
−

−=⇒>≥
BGHRBG 3 (62)

Δ
−

+=⇒≥>
GBHRGB 3 (63)

Δ
−

−=⇒>>
RBHGRB 5 (64)

Δ
−

+=⇒≥≥
BRHGBR 5 (65)

6
HH = (66)

It should be noted that the transformation to HSV coordinate system does not
increase or decrease the amount of information that the color coordinates
contain. Assuming that the mapping from Cartesian RGB coordinates to cy-
lindrical HSV coordinates is “one-to-one” (or more formally, assuming it is
bijective), the problem can be solved in either coordinate system. Only the

 73

specification of certain color subspaces becomes more convenient in HSV
coordinates.

For the sake of completeness, we mention that in practice the computation is
done using a finite precision. Because the transformation is non-linear, it in-
troduces rounding errors. Consequently, the mapping from the discrete RGB
coordinates to the discrete HSV coordinates is not exactly injective. [17]

Shih has measured the errors when colors are transformed between RGB
and HSV color space, among some other perceptual spaces. He assumes
24-bit pixel depth1, which is still the most commonly used precision. Real
numbers were used for calculations, and results were rounded in each color
space. He found out that the extreme error, when transforming colors from
RGB to HSV and back, was ±3.1 for each component. Shih opines that the
error is insignificant for human visual inspection, but may be worth consider-
ing, when the images are going to be processed analytically in the new color
space. [17]

1 The number of bits needed to store one pixel. 24-bit images store each of the three color
coordinates as 8-bit integers.

 74

Appendix D Membership tables
We used a fuzzy membership function to classify pixels as lying inside the
log end region or not. Values of the membership function were calculated into
three-dimensional decision tables, one for each sort of wood. The member-
ship function is based on two numbers, no(R, G, B) and nb(R, G, B), that are
calculated from training patterns. They represent the number of occurrences
of color (R, G, B) in log end and background pixels respectively. The mem-
bership function is shown below:

[]),,(),,(max
),,(),,(

),,(
,,

BGRnBGRn
BGRnBGRn

BGRm
bobgr

bo
o −

−
=

(67)

We cropped log end and background regions from existing log end images
and combined them into object and background training sets respectively.
The background training set consists mostly of bark. A positive membership
value indicates that the color has appeared more often in log end pixels than
in background.

The membership tables are visualized in the contour maps in the following
pages. R component is on the horizontal axis and B component is on the ver-
tical axis. The range of possible values of each component is from 0 to 255.
The grid has been calculated by integrating the membership values over the
values of green component from 0 to 255. In other words the color of the con-
tour map at coordinates (x, y) represents the magnitude of the sum

∑
=

255

0
),,(

G
o yGxm . (68)

Red areas indicate colors with a negative membership value. Those areas
contain bark color and other background colors. Green areas indicate colors
with a positive membership value. Those colors have appeared more often in
log end pixels. A general trend that can be seen from the contour maps is
that especially the color of bark pixels is very little saturated and largely inde-
pendent of brightness. The color of log end pixels depends to some extent on
brightness, but mostly on chromaticity. The fact that red and green areas are
not well separated from each other shows that color cannot perfectly dis-
criminate the log end from the bark.

 75

0 50 100 150 200 250
0

50

100

150

200

250

-6
-5.5
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

Figure 20. A cross section of the membership table for aspen.

0 50 100 150 200 250
0

50

100

150

200

250

-6
-5.5
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

Figure 21. A cross section of the membership table for spruce.

 76

0 50 100 150 200 250
0

50

100

150

200

250

-6
-5.5
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

Figure 22. Cross section of the membership table for birch.

0 50 100 150 200 250
0

50

100

150

200

250

-6
-5.5
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

Figure 23. A cross section of the membership table for pine.

 77

Appendix E Disjoint-set forest data structure
The connected components algorithm that we use relies on disjoint-set forest
data structure. We implemented the data structure based on the explanation
by Cormen et al. [47]. Disjoint-set forest is an implementation of disjoint sets
with “practically” linear running time. Our implementation of the data structure
is described here.

Disjoint-set forest is a data structure that maintains a collection of dynamic
sets. The sets are disjoint, meaning that each element belongs to exactly one
set. Each set is represented by a rooted tree. Elements of the sets are nodes
of the trees, implemented as objects allocated on the heap. Each node con-
tains a pointer only to its parent node. The parent pointer of a root node
points to the node itself. To facilitate certain optimizations, a rank that gives
an upper bound on the depth of the hierarchy below the node is also stored
in each node object.

Creating a set is trivial. A node object is allocated whose parent pointer
points to itself. The rank of the node is set to 0. A pointer to the object is
added to a list of all the nodes on the heap, so that the memory they occupy
can be released when the algorithm finishes.

The set into which each node belongs is identified by the root node of that
tree. The connected components algorithm also stores set-specific informa-
tion into the root node. However, it should be noted that a union operation
always changes the root node of one of the sets.

The root node of the tree to which a given node belongs can be found by fol-
lowing the parent pointers recursively until a node is encountered whose par-
ent pointer points to itself. Deep hierarchies make the operation slow, so
each time the recursive function returns, the parent pointer of the current
node will be set to point directly to the root node. This optimization is called
path compression.

The key to an efficient connected components algorithm is link operation,
which efficiently produces the union of two sets. Given two elements, A and
B, link operation combines all the elements from the sets whose elements A
and B are into a new set. If both the sets have the same root node, A and B
are elements of the same set, and nothing has to be done. Otherwise the
parent pointer of one of the root nodes is set to point to the other root node.

 78

Finding the root nodes of both the sets is
the most expensive procedure involved in
the link operation. To keep the hierarchy
as flat as possible, another optimization in
addition to path compression called union
by rank is used. Union by rank means that
when linking two root nodes, the one with
the lower rank is set to point to the other.
If two trees with equal ranks are linked,
the rank of the resulting tree will be in-
creased.

The resulting tree is likely to become flatter that way, since the tree whose
root node has higher rank has probably deeper hierarchy. In Figure 24 one
tree contains nodes A, B, C, and D, and another tree contains nodes E and
F. Because the one that contains only nodes E and F has flatter hierarchy, it
is more efficient to set the root of that tree (E) to point to the root of the other
tree (A), than the other way around.

E

F

A

B

C AD
Figure 24. Two disjoint sets are
linked by setting the root of one of the
trees to point to the root of the other.

 79

Appendix F Glossary of color terminology
Hue: The attribute of visual sensation that depends on the wavelength of the
perceived light. Color names, such as red, yellow, green, and blue, denote
hue.

Brightness: The attribute of visual sensation that depends on the intensity of
the perceived light [36]. Bright light appears more intense, while dim light ap-
pears less intense. In contrast to lightness, brightness indicates the absolute
intensity of light.

Lightness: Brightness in proportion to the brightness of an object perceived
as “white” under similar lighting conditions [36]. Light objects appear to emit
more light, while dark objects appear to emit less light. In contrast to bright-
ness, lightness indicates how bright an object appears relative to other ob-
jects in the scene. However, lightness and brightness are often used inter-
changeably, and defined in different ways in some color coordinate systems.

Value: The name of the coordinate that relates to brightness in HSV color
coordinate system [19].

Chroma: The attribute of visual sensation that distinguishes a chromatic light
from an achromatic light of the same brightness [36]. In physical terms, this
means the intensity of the dominant wavelength in the perceived color spec-
trum; a color that has high chroma has a high peak in the frequency spec-
trum, and also high saturation compared to other colors of the same bright-
ness. In contrast to saturation, dim light has always low chroma.

Saturation: The attribute of visual sensation that distinguishes a chromatic
light from an achromatic light regardless of their brightness [36]. In physical
terms, this means the purity of the dominant wavelength in the perceived
color spectrum; in a saturated color the energy of the light is concentrated on
a narrow frequency band. In contrast to chroma, saturation indicates the col-
orfulness of light relative to its brightness [21]. This means that even dim light
may have high saturation.

Chromaticity: An attribute that combines hue and saturation [2].

Color: An attribute that combines chromaticity and brightness.

 80

Spectral locus: The colors that are on the boundary of the gamut of human
vision. The spectral colors are seen as a horse-shoe-shaped curve in the CIE
XYZ chromaticity diagram. [21]

Primaries: Color display devices create the color sensation by mixing a small
number of primary colors, also called the primaries. CRT monitors use three
kinds of phosphors as the primaries, each of which emits only light of a spe-
cific wavelength. The choice of the primaries affects the gamut of colors that
can be produced.

Tristimulus values: The intensities of primary colors that produce a particular
color sensation [2].

 81

REFERENCES
1. Österberg, P., H. Ihalainen, and R. Ritala. 2004. Method for Analyzing

and Classifying Wood Quality through Local 2D-spectrum of Digital
Log End Images, in Proceedings of the International Conference on
Advanced Optical Diagnostics in Fluids, Solids and Combustion (VSJ-
SPIE '04), Tokyo: The Visualization Society of Japan.

2. Gonzalez, R.C. and R.E. Woods. 2001. Digital Image Processing: Ad-
dison-Wesley Longman Publishing Co., Inc. 793.

3. Conners, R.W., et al. 1997. Machine vision technology for the forest
products industry. Computer, 30(7): p. 43–48.

4. Pham, D.T. and R.J. Alcock. 1998. Automated grading and defect de-
tection: A review. Forest Products Journal, 48(4): p. 34–42.

5. Lycken, A. 2006. Comparison between automatic and manual quality
grading of sawn softwood. Forest Products Journal, 56(4): p. 13–18.

6. Todoroki, C.L., R.A. Monserud, and D.L. Parry. 2005. Predicting inter-
nal lumber grade from log surface knots: Actual and simulated results.
Forest Products Journal, 55(6): p. 38–47.

7. Todoroki, C. 2003. Accuracy considerations when optimally sawing
pruned logs: internal defects and sawing precision. Nondestructive
Testing and Evaluation, 19: p. 29–41.

8. Funck, J.W., et al. 2003. Image segmentation algorithms applied to
wood defect detection. Computers and Electronics in Agriculture,
41(1-3): p. 157-179.

9. Conners, R.W., et al. 1989. A system for identifying defects in hard-
wood lumber that uses AI methods, in Proceedings of the IEEE
Southeastcon '89, Columbia, SC. p. 1080–1084.

10. Mantegazza, P., E.L. Dozio, and S. Papacharalambous. 2000. RTAI:
Real Time Application Interface. Linux Journal, 2000(72).

11. Cheng, H.D., et al. 2001. Color image segmentation: advances and
prospects. Pattern Recognition, 34(12): p. 2259–2281.

12. Freixenet, J., et al. 2002. Yet Another Survey on Image Segmentation:
Region and Boundary Information Integration, in Proceedings of the
7th European Conference on Computer Vision—Part III: Springer-
Verlag.

13. Limb, J., C. Rubinstein, and J. Thompson. 1977. Digital Coding of
Color Video Signals—A Review. IEEE Transactions on Communica-
tions, 25(11): p. 1349–1385.

 82

14. Dirks, B., M.H. Schimek, and H. Verkuil. Video for Linux Two API
Specification. 1999 [cited 2006-03-14]; Available from:
http://v4l2spec.bytesex.org/spec/

15. Vila, J., et al. 2005. SmartSpectra: Applying multispectral imaging to
industrial environments. Real-Time Imaging, 11(2): p. 85–98.

16. Gauch, J.M. and C.W. Hsia. 1992. Comparison of three-color image
segmentation algorithms in four color spaces. Proceedings of SPIE,
1818: p. 1168–1181.

17. Shih, T.Y. 1995. The reversibility of six geometric color spaces. Pho-
togrammetric Engineering and Remote Sensing, 61(10): p. 1223–
1232.

18. Munsell, A.H. 1905. A Color Notation. Boston, MA: Munsell Color
Company.

19. Smith, A.R. 1978. Color gamut transform pairs, in Proceedings of the
5th annual conference on Computer graphics and interactive tech-
niques: ACM Press.

20. Douglas, S. and T. Kirkpatrick. 1996. Do color models really make a
difference?, in Proceedings of the SIGCHI conference on Human fac-
tors in computing systems: common ground, Vancouver, British Co-
lumbia, Canada: ACM Press.

21. Joblove, G.H. and D. Greenberg. 1978. Color spaces for computer
graphics, in Proceedings of the 5th annual conference on Computer
graphics and interactive techniques: ACM Press.

22. Stokes, M., et al. A Standard Default Color Space for the Internet—
sRGB. [cited 2006-03-17]; Available from:
http://www.w3.org/Graphics/Color/sRGB.html

23. Meyer, G.W. and D.P. Greenberg. 1980. Perceptual color spaces for
computer graphics, in Proceedings of the 7th annual conference on
Computer graphics and interactive techniques, Seattle, Washington,
United States: ACM Press.

24. Kasson, J.M. and W. Plouffe. 1992. An analysis of selected computer
interchange color spaces. ACM Transactions on Graphics, 11(4): p.
373–405.

25. Comaniciu, D. and P. Meer. 1997. Robust analysis of feature spaces:
color image segmentation, in Proceedings of the 1997 Conference on
Computer Vision and Pattern Recognition (CVPR '97): IEEE Computer
Society. p. 750–755.

http://v4l2spec.bytesex.org/spec/
http://www.w3.org/Graphics/Color/sRGB.html

 83

26. Jolion, J.M., P. Meer, and S. Bataouche. 1991. Robust clustering with
applications in computer vision. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 13(8): p. 791–802.

27. Adams, R.A. 2003. Calculus—A Complete Course. Toronto: Addison-
Wesley Longman Publishing Co., Inc. 999.

28. Koschan, A. and M. Abidi. 2005. Detection and classification of edges
in color images. IEEE Signal Processing Magazine, 22(1): p. 64–73.

29. Tao, H. and T.S. Huang. 1997. Color image edge detection using clus-
ter analysis, in Proceedings of the 1997 International Conference on
Image Processing (ICIP '97). p. 834–836.

30. Trahanias, P.E. and A.N. Venetsanopoulos. 1993. Color edge detec-
tion using vector order statistics. IEEE Transactions on Image Proc-
essing, 2(2): p. 259–264.

31. Healey, G. 1992. Segmenting images using normalized color. Sys-
tems, Man and Cybernetics, IEEE Transactions on, 22(1): p. 64–73.

32. Shafer, S.A. 1984. Using Color to Separate Reflection Components:
University of Rochester, Computer Science Department.

33. Healey, G. 1992. Using color for geometry-insensitive segmentation.
Journal of Optical Society of America A, 6(6): p. 920–937.

34. Klinker, G.J., S. Shafer, and T. Kanade. 1988. Image Segmentation
and Reflection Analysis Through Color. Proceedings of SPIE, 937.

35. Maxwell, B.A. and S.A. Shafer. 2000. Segmentation and Interpretation
of Multicolored Objects with Highlights. Computer Vision and Image
Understanding, 77(1): p. 1–24.

36. Wyszecki, G. and W.S. Stiles. 1982. Color Science: Concepts and
Methods, Quantitative Data and Formulae. New York: Wiley. 950.

37. Gejguš, P. and M. Šperka. 2003. Face tracking in color video se-
quences, in Proceedings of the 19th spring conference on Computer
graphics, Budmerice, Slovakia: ACM Press.

38. Ming-Hsuan, Y. and N. Ahuja. 1998. Detecting human faces in color
images, in Proceedings of the 1998 International Conference on Im-
age Processing (ICIP '98), Chicago. p. 127–130.

39. Chan, F.H.Y., et al. 1996. Object boundary location by region and con-
tour deformation. IEE Proceedings—Vision, Image & Signal Process-
ing, 143(6): p. 353–360.

40. Rahimi, A. Fast Connected Components on Images. [cited 2006-05-
20]; Available from: http://web.media.mit.edu/~rahimi/connected/

http://web.media.mit.edu/%7Erahimi/connected/

 84

41. Brunelli, R. and T. Poggiot. 1997. Template matching: matched spatial
filters and beyond. Pattern Recognition, 30(5): p. 751–768.

42. Haralick, R.M. 1979. Statistical and structural approaches to texture.
Proceedings of the IEEE, 67(5): p. 786–804.

43. Ruck, D.W., et al. 1990. The multilayer perceptron as an approxima-
tion to a Bayes optimal discriminant function. IEEE Transactions on
Neural Networks, 1(4): p. 296–298.

44. Gremban, K.D., C.E. Thorpe, and T. Kanade. 1988. Geometric cam-
era calibration using systems of linear equations, in Proceedings of
IEEE Conference on Robotics and Automation (ICRA '88). p. 562–
567.

45. Wei, G.Q. and S.D. Ma. 1991. Two plane camera calibration: a unified
model, in Proceedings of the 1991 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR '91). p.
133–138.

46. Potmesil, M. and I. Chakravarty. 1982. Synthetic Image Generation
with a Lens and Aperture Camera Model. ACM Transactions on
Graphics, 1(2): p. 85–108.

47. Cormen, T.H., C.E. Leiserson, and R.L. Rivest. 1990. Introduction to
Algorithms. Cambridge: The MIT Press.

	1 INTRODUCTION
	1.1 The purpose of the thesis
	1.2 The scope and requirements for the project
	1.3 Automatic grading of wood
	1.3.1 Unsawn logs
	1.3.2 Sawmills

	1.4 The organization of the thesis
	2 THE ENVIRONMENT
	2.1 Existing Mitla measurement system
	2.2 The structure of the new automatic grading system

	3 IMAGE ACQUISITION
	3.1 Lighting
	3.2 Field of view
	3.3 Depth of focus
	3.4 Capture signal
	3.5 Serial port latency

	4 COLOR IMAGE SEGMENTATION
	4.1 Definition of image segmentation
	4.2 Limitations of the human perception
	4.3 Color spaces
	4.3.1 RGB
	4.3.2 HSV
	4.3.3 CIE XYZ
	4.3.4 Perceptually uniform color spaces

	4.4 Histogram thresholding
	4.4.1 Selecting an optimal threshold
	4.4.2 Color images
	4.4.3 Feature space clustering

	4.5 Other region-based methods
	4.6 Boundary-based methods
	4.6.1 Point and line detection
	4.6.2 Edge detection
	4.6.3 Color edge detection
	4.6.4 Edge linking

	4.7 Physics-based approaches

	5 ADAPTING TO EARLY TRIGGERING OF IMAGE CAPTURE
	5.1 Localizing the log in real time
	5.2 Discussion

	6 LOG IMAGE SEGMENTATION
	6.1 Selecting a segmentation method
	6.2 HSV wood color model
	6.3 The final wood color model
	6.3.1 Wood species
	6.3.2 Adaptive membership tables
	6.3.3 Bayes classifier
	6.3.4 Fuzzy regions

	6.4 Discussion
	6.4.1 Region-based segmentation
	6.4.2 Combining different segmentation algorithms

	7 LOG END RECOGNITION
	7.1 Region size constraint
	7.2 Region shape constraint
	7.3 The final log end recognition algorithm

	8 CALCULATING EVIDENCE OF DEFECTS
	8.1 Evidence function
	8.2 Discussion
	8.2.1 Textural features
	8.2.2 Learning classifiers

	9 DOUBLE FEED DETECTION
	9.1 Detecting images with two or more logs
	9.2 Discussion

	10 RESULTS
	10.1 Practical concerns
	10.2 Defect detection
	10.3 Double feed detection

	11 CONCLUSION

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

