
sah hceeps hsinniF fo noitingocer citamotuA
wol yrev dna ,sedaced rof depoleved neeb
ylraelc no deveihca neeb evah setar rorre

sa hcus ,hsinniF dradnats nekops
larutan fo noitingoceR .stsacdaorb swen

ehT .gnignellahc erom hcum si snoitasrevnoc
hsinniF ni desu si taht egaugnal

morf syaw ynam ni sreffid osla snoitasrevnoc
seriuqer noitingocer sti dna ,hsinniF dradnats

 .elbaliavanu neeb ylsuoiverp sah taht atad

hceeps citamotua spoleved siseht sihT
lanoitasrevnoc rof noitingocer

roF .noitcelloc atad morf gnitrats ,hsinniF
era txet fo stnuoma egral ,gniledom egaugnal

ot deretlfi dna ,tenretnI eht morf detcelloc
nA .elyts gnikaeps laiuqolloc eht hctam
ot desu dna dehsilbup si tes noitaulave

lanoitasrevnoc ni ssergorp eht kramhcneb
siseht ehT .noitingocer hceeps hsinniF

morf esira taht seitlucfifid ynam sesserdda
ni desu si taht yralubacov eht taht tcaf eht

yB .egral yrev si snoitasrevnoc hsinniF
laicfiitra gnisu egaugnal dna hceeps gniledom

ydaerla si taht ycarucca ,skrowten laruen
 .deveihca si snoitacilppa lacitcarp rof lufesu

-o
tl

a
A

D
D

2

5
/

 8
10

2

 +d
hajh

a*GM
FTSH

9 NBSI 3-7097-06-259-879)detnirp(
 NBSI 0-8097-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
scitsuocA dna gnissecorP langiS fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 i
vr

an
E

op
pe

S
 n

oi
ti

ng
oc

e
R

hc
ee

pS
 c

it
a

mo
tu

A
ro

f
hs

in
ni

F l
an

oi
ta

sr
ev

no
C

gn
il

ed
o

M
 y

ti
sr

ev
i

n
U

otl
a

A

 8102

 scitsuocA dna gnissecorP langiS fo tnemtrapeD

lanoitasrevnoC gniledoM
citamotuA rof hsinniF

 noitingoceR hceepS

 ivranE oppeS

ct−1 ct

s
(l)
t−1 s

(l)
t

s
(l−1)
t

×

0

1

Wf Wi

0

1

W

-1

1

Wo

0

1

×

+

-1

1

×

 LAROTCOD
 SNOITATRESSID

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 25 / 8102

rof hsinniF lanoitasrevnoC gniledoM
 noitingoceR hceepS citamotuA

 ivranE oppeS

fo rotcoD fo eerged eht rof detelpmoc noitatressid larotcod A
eht fo noissimrep eht htiw ,dednefed eb ot)ygolonhceT(ecneicS

cilbup a ta ,gnireenignE lacirtcelE fo loohcS ytisrevinU otlaA
3 no gnidliub HTH eht fo a932F muirotidua eht ta dleh noitanimaxe

 .21 ta 8102 yaM

 ytisrevinU otlaA
 gnireenignE lacirtcelE fo loohcS

 scitsuocA dna gnissecorP langiS fo tnemtrapeD
 puorG hcraeseR noitingoceR hceepS

 rosseforp gnisivrepuS
 omiruK okkiM rosseforP

 rosivda sisehT

 ajoipriV imaS .rD

 srenimaxe yranimilerP
 ynamreG ,ytisrevinU dnalraaS ,wokalK hcirteiD rosseforP

 ASU ,hcraeseR tfosorciM ,ekclotS saerdnA .rD

 tnenoppO
 cilbupeR hcezC ,ygolonhceT fo ytisrevinU onrB ,ýkconreČ naJ rosseforP etaicossA

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 25 / 8102

 © 8102 ivranE oppeS

 NBSI 3-7097-06-259-879)detnirp(
 NBSI 0-8097-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

:NBSI:NRU/if.nru//:ptth 0-8097-06-259-879

 yO aifarginU
 iknisleH 8102

 dnalniF

 tcartsbA
 otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otlaA if.otlaa.www

 rohtuA
 ivranE oppeS

 noitatressid larotcod eht fo emaN
 noitingoceR hceepS citamotuA rof hsinniF lanoitasrevnoC gniledoM

 rehsilbuP gnireenignE lacirtcelE fo loohcS

 tinU scitsuocA dna gnissecorP langiS fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 25 / 8102

 hcraeser fo dleiF ygolonhceT egaugnaL dna hceepS

 dettimbus tpircsunaM 7102 rebotcO 91 ecnefed eht fo etaD 8102 yaM 3

)etad(detnarg hsilbup ot noissimreP 8102 yraunaJ 5 egaugnaL hsilgnE

 hpargonoM noitatressid elcitrA noitatressid yassE

 tcartsbA
otlaA .sedaced rof gnivorpmi yltnatsnoc neeb sah srezingocer hceeps citamotua fo ycarucca ehT

setar rorre wol yrev deveihca dna hceeps hsinniF fo noitingocer citamotua depoleved sah ytisrevinU
snoitasrevnoc larutan fo noitingoceR .stsacdaorb swen sa hcus ,hsinniF dradnats nekops ylraelc no

ni sreffid osla snoitasrevnoc hsinniF ni nekops si taht egaugnal ehT .gnignellahc erom hcum si
neeb ylsuoiverp sah taht atad seriuqer noitingocer sti dna ,hsinniF dradnats morf syaw ynam

 .elbaliavanu

yb gnitrats ,hsinniF lanoitasrevnoc rof noitingocer hceeps citamotua spoleved siseht sihT
era txet fo stnuoma egral ,gniledom egaugnal roF .atad noitaulave dna gniniart fo noitcelloc

tes noitaulave nA .elyts gnikaeps laiuqolloc eht hctam ot deretlfi dna ,tenretnI eht morf detcelloc
ehT .noitingocer hceeps hsinniF lanoitasrevnoc ni ssergorp eht kramhcneb ot desu dna dehsilbup si
hsinniF ni desu si taht yralubacov eht taht tcaf eht morf esira taht seitlucfifid ynam sesserdda siseht
laruen tnerrucer dna gniledom citsuoca rof skrowten laruen peed gnisU .egral yrev si snoitasrevnoc

deveihca si snoitacilppa lacitcarp ni lufesu ydaerla si taht ycarucca ,gniledom egaugnal rof skrowten
 .noitingocer hceeps lanoitasrevnoc ni

 sdrowyeK laruen laicfiitra ,sessalc drow ,gniledom egaugnal ,noitingocer hceeps citamotua
 noitcelloc atad ,skrowten

)detnirp(NBSI 3-7097-06-259-879)fdp(NBSI 0-8097-06-259-879

 L-NSSI 4394-9971)detnirp(NSSI 4394-9971)fdp(NSSI 2494-9971

 rehsilbup fo noitacoL iknisleH gnitnirp fo noitacoL iknisleH raeY 8102

 segaP 581 nru :NBSI:NRU/fi.nru//:ptth 0-8097-06-259-879

 ämletsiviiT
 otlaA 67000 ,00011 LP ,otsipoily-otlaA if.otlaa.www

 äjikeT
 ivranE oppeS

 imin najriksötiäV
 netrav atsutsinnutneehup atsittaamotua nenimatnillam neleikehup nemouS

 ajisiakluJ uluokaekrok nakiinketökhäS

 ökkiskY sotial nakiitsuka aj nylettisäknilaangiS

 ajraS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 25 / 8102

 alasumiktuT aigolonketileik aj -ehuP

 mvp neskutiojrikisäK 7102.01.91 äviäpsötiäV 8102.50.30

 äviäpsimätnöym navulusiakluJ 8102.10.50 ileiK itnalgnE

 aifargonoM ajriksötiävilekkitrA ajriksötiäveessE

 ämletsiviiT
neinemmykisouv netsiemiiv tunutnarap itsavuktaj no suukkrat neskutsinnutneehup nesittaamotuA
ytsääp aj elleleik nemous atsutsinnutneehup atsittaamotua yttetihek no assotsipoily-otlaA .anakia

iskikremise ,asseskutsinnut neleikajrik nutuhup itsäekles nihiettnesorpehriv niineip nivyh
nemouS .aapmavatsaah nojlap no nenimatsinnut nejuletsuksek netillonnouL .ätsiskytehälsituu

,aotsieniaoteit naativrat neesimatsinnut nes aj ,ätseleikajrik allavat allenom söym aaore ileikehup
 .allivataas tullo elo nimmesiakia ie atoj

-sutepo neakla ,elleleikehup nemous atsutsinnutneehup atsittaamotua äättihek ajriksötiäv ämäT

ärääm iruus näätärek ätsitenretnI netrav atsimatnillam neleiK .ätsesimäärek notsieniaitset aj
ätis aj naatsiakluj otsieniaitseT .äilyyt neleikehup naamaatsav naatetadous otsienia aj äitsket

neskutsinnut neehup nesiotoumuletsuksek neleik nemous naadioivra nuk ,änireetirk näätetyäk
näätetyäk atoj otsanas ätte ,ätiis tavutnouj aktoj aimlegno ainom naatiktut assajriksötiäV .ätsytihek

neesitsuka näätetyäk ajokkrevoruen äivys nuK .osi alledot no assiuletsuksek ässisileiknemous
naatetuvaas ,neeskunnillam neleik näätetyäk ajokkrevoruen äjyttektyknisiakat aj neeskunnillam

 .niiskullevos nönnätyäk nenillovlek oj no akoj suukkrat asseskutsinnut neehupuletsuksek

 tanasniavA ,tokrevoruen ,takoulanas ,nenimatnillam neleik ,sutsinnutneehup nenittaamotua
 uureknodeit

)utteniap(NBSI 3-7097-06-259-879)fdp(NBSI 0-8097-06-259-879

 L-NSSI 4394-9971)utteniap(NSSI 4394-9971)fdp(NSSI 2494-9971

 akkiapusiakluJ iknisleH akkiaponiaP iknisleH isouV 8102

 äräämuviS 581 nru :NBSI:NRU/fi.nru//:ptth 0-8097-06-259-879

s

Preface

I started working on this thesis in 2012, in the Speech Recognition Re-

search Group of the Department of Information and Computer Science

at Aalto University School of Science. The group moved in 2013 to the

Department of Signal Processing and Acoustics, which is part of the School

of Electrical Engineering. I am thankful for the opportunity to work at

Aalto University, and of the funding I received from external sources. I

received scholarships from Finnish Cultural Foundation (Suomen Kult-

tuurirahasto) and Kone Foundation (Koneen Säätiö). This research was

also partially funded through grants awarded by the Academy of Finland

(Suomen Akatemia). The research involved many compute-intensive exper-

iments that relied on the computational resources provided by the Aalto

Science-IT project.

I would like to thank my colleagues who I have had the pleasure to

work with in the speech group. I am in especially great gratitude to

my supervisor Prof. Mikko Kurimo, who has guided my work, aided in

writing the articles, and was extremely helpful in arranging the funding.

I appreciate all the support I got from Janne Pylkkönen while I was

starting speech recognition research. I am thankful to Sami Virpioja for

examining the thesis and our co-operation in writing a journal article. I

had interesting discussions, collaborated in writing articles, and received

kindly feedback for my thesis from Peter Smit and Matti Varjokallio. I am

grateful also to André Mansikkaniemi for our collaboration in writing a

journal article.

In addition to the members of the speech group at Aalto University, I

had the pleasure to collaborate with Tanel Alumäe and Ottokar Tilk from

Tallinn University of Technology in writing a journal article. I had a very

inspiring visit to the International Computer Science Institute in 2012,

which was funded by Helsinki Institute for Information Technology. I am

1

Preface

thankful for getting to know such a diverse group of people who taught me

a lot of things about research, speech recognition, and playing table football.

Afterwards I had valuable discussions with Oriol Vinyals regarding my

next conference paper.

My family and friends always seemed to know I am going to pursue a

Ph.D. even before I knew it myself. Now I realize how important their

encouragement has been. During the long and intense time that I was

working on this thesis I also understood how lucky I was to have the

support that I have had from my life partner.

Helsinki, February 24, 2018,

Seppo Enarvi

2

Contents

Preface 1

Contents 3

List of Publications 7

Author’s Contribution 9

List of Abbreviations 11

List of Symbols and Notations 13

1. Introduction 15

1.1 Transcribing Finnish Conversations 15

1.2 Scope and Contributions of the Thesis 17

1.3 Structure of the Thesis . 19

2. Automatic Speech Recognition for Conversational Finnish 21

2.1 Approaches to Speech Recognition 21

2.2 Speech Recognition Using the HMM Framework 24

2.3 N-best Lists and Word Lattices 27

2.4 Training HMM-based Acoustic Models 27

2.5 Pronunciation Modeling . 29

2.5.1 Modeling Pronunciation Variation in a Dictionary . . 30

2.5.2 Pronunciation Variation in Finnish Written Conver-

sations . 31

2.6 Data Sparseness in Finnish Conversations 33

2.7 Evaluating Speech Recognition Performance 34

3. Statistical Language Models 37

3.1 Probabilistic Model of Language 37

3

Contents

3.2 N-gram Language Models . 38

3.2.1 Smoothing . 39

3.2.2 Maximum Entropy Models 40

3.3 Class-based Language Models 41

3.4 Subword Language Models . 42

3.4.1 Morfessor . 42

3.4.2 Maximum-Likelihood Models 45

3.5 Combining Multiple N-gram Language Models 46

3.6 Evaluating Language Models 48

3.7 Variable-Order and Pruned N-gram Models 50

3.8 Forming Word Classes . 52

3.8.1 Unsupervised Methods 52

3.8.2 Rules for Clustering Conversational Finnish Words . 54

3.9 Details on the N-gram Models Used in This Thesis 55

4. Neural Network Language Models 59

4.1 Artificial Neural Networks . 59

4.2 Suitability of Neural Networks for Language Modeling . . . 62

4.3 Training Neural Networks . 64

4.3.1 Stochastic Gradient Descent 65

4.3.2 Backpropagation Algorithm 66

4.4 Learning Deep Representations 68

4.4.1 Long Short-Term Memory 70

4.4.2 Highway Networks . 72

4.5 Cost Functions and Softmax Approximations 72

4.5.1 Cross-Entropy Cost . 73

4.5.2 Importance Sampling 74

4.5.3 Noise-Contrastive Estimation 75

4.5.4 Generalization to Larger Noise Sample 77

4.5.5 BlackOut . 78

4.5.6 Unnormalized Models 78

4.5.7 Hierarchical Softmax 79

4.6 Combining Data Sources . 79

4.7 Implementation of TheanoLM 81

4.8 Using NNLMs to Rescore Decoder Output 84

4.9 Details on the NNLMs Used in This Thesis 85

5. Collecting Conversational Finnish Data 89

5.1 Aalto University DSPCON Corpus 89

4

Contents

5.2 Collecting Language Modeling Data from the Internet 90

5.3 Text Normalization . 91

5.4 Text Filtering . 92

6. Conclusions 95

6.1 Future Work . 97

References 99

Errata 109

Publications 111

5

Contents

6

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Seppo Enarvi and Mikko Kurimo. A Novel Discriminative Method for

Pruning Pronunciation Dictionary Entries. In Proceedings of the 7th

International Conference on Speech Technology and Human-Computer

Dialogue (SpeD), Cluj-Napoca, Romania, pages 113–116, October 2013.

II Seppo Enarvi and Mikko Kurimo. Studies on Training Text Selection

for Conversational Finnish Language Modeling. In Proceedings of the

10th International Workshop on Spoken Language Translation (IWSLT),

Heidelberg, Germany, pages 256–263, December 2013.

III Mikko Kurimo, Seppo Enarvi, Ottokar Tilk, Matti Varjokallio, André

Mansikkaniemi, and Tanel Alumäe. Modeling under-resourced languages

for speech recognition. Language Resources and Evaluation, volume 51,

issue 4, pages 961–987, December 2017.

IV Seppo Enarvi and Mikko Kurimo. TheanoLM — An Extensible Toolkit

for Neural Network Language Modeling. In Proceedings of the 17th

Annual Conference of the International Speech Communication Asso-

ciation (INTERSPEECH), San Francisco, CA, USA, pages 3052–3056,

September 2016.

V Seppo Enarvi, Peter Smit, Sami Virpioja, and Mikko Kurimo. Auto-

matic Speech Recognition with Very Large Conversational Finnish and

7

List of Publications

Estonian Vocabularies. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, volume 25, issue 11, pages 2085–2097, November

2017.

8

Author’s Contribution

Publication I: “A Novel Discriminative Method for Pruning
Pronunciation Dictionary Entries”

The author invented and implemented the algorithm described in the

article, and conducted the experiments. The author was also the main

writer of the article.

Publication II: “Studies on Training Text Selection for
Conversational Finnish Language Modeling”

The author designed and implemented the data collection and filtering

methods used in the article. The author was also the main contributor in

analyzing the results and writing the article.

Publication III: “Modeling under-resourced languages for speech
recognition”

The author contributed the experiments on selecting conversational text

from the Internet. The author implemented the data selection algorithms,

and improved them to work efficiently with large data sets and morphologi-

cally rich languages. The author also provided the lattice-based method for

pruning pronunciations of foreign proper names. The author wrote mainly

the sections related to data selection.

9

Author’s Contribution

Publication IV: “TheanoLM — An Extensible Toolkit for Neural
Network Language Modeling”

The author implemented the language modeling toolkit and performed the

experiments. The author was also the main contributor in analyzing the

results and writing the article.

Publication V: “Automatic Speech Recognition with Very Large
Conversational Finnish and Estonian Vocabularies”

The author contributed the experiments on clustering words into classes

and designed the rule-based method for clustering Finnish words. The

author implemented the neural network language modeling methods and

lattice decoding, and performed the lattice rescoring experiments. The

author was also the main contributor in analyzing the results and writing

the article.

10

List of Abbreviations

ASR automatic speech recognition

BPTT backpropagation through time

CBOW continuous bag-of-words

CEC constant error carousel

CER character error rate

CSG continuous skip-gram

CTC connectionist temporal classification

DNN deep neural network

EM expectation maximization

FST finite-state transducer

GMM Gaussian mixture model

GPU graphics processing unit

HMM hidden Markov model

HTML hypertext markup language

IPA International Phonetic Alphabet

LER letter error rate

LSTM long short-term memory

MAP maximum a posteriori

MDL minimum description length

MFCC mel-frequency cepstral coefficient

ML maximum likelihood

MMI maximum mutual information

MSE mean squared error

NCE noise-contrastive estimation

NIST National Institute of Standards and Technology

NNLM neural network language model

OOS out of shortlist

OOV out of vocabulary

11

List of Abbreviations

RNN recurrent neural network

SGD stochastic gradient descent

TDNN time delay neural network

tf–idf term frequency–inverse document frequency

WER word error rate

XML extensible markup language

12

List of Symbols and Notations

a(l) a vector of preactivations of layer l in a neural network

b(l) the bias vector of layer l in a neural network

c(w) the number of occurrences of n-gram w in training data

C a cost function for an optimization task

DKL(p ‖ p′) relative entropy (Kullback–Leibler divergence) from

probability distribution p to p′

E
[
X
]

expectation of the random variable X

hn the history (context) of length n in a sequence of words

H(p) entropy of the probability distribution p

H(Y | X) conditional entropy of the random variable Y given the

random variable X

H(p, p′) cross entropy between two probability distributions p

and p′

H(x, p) empirical cross entropy between the distribution of the

data x and the probability distribution p

L(θ) likelihood of the model parameters θ

N number of words

p(x) a probability function

PP (p) perplexity of the probability distribution p

PP (x, p) empirical perplexity of the probability distribution p

on the data x

s(l) the hidden state of layer l in a neural network

w a sequence of words / an n-gram

W (l) the weight matrix of layer l in a neural network

z a latent variable in an HMM or a mixture model

α a hyperparameter controlling the objective of the Mor-

fessor algorithm

β(hn−1) a back-off weight of an n-gram language model

13

List of Symbols and Notations

δij the Kronecker delta function

Δ(l) error vector in layer l during backpropagation

ζ(x) the softplus function

η learning rate in numerical optimization

θ model parameters

λ an interpolation weight / a Lagrange multiplier in con-

strained optimization

σ(x) the logistic sigmoid function

φ(a) an activation function in a neural network

x� y Hadamard (elementwise) product of vectors x and y

14

1. Introduction

1.1 Transcribing Finnish Conversations

Speech recognition is the task of writing a text transcript of what was said

in an audio signal. During the past five decades, speech recognition has

developed from classifying individual words to transcribing continuous

speech. Initially, the vocabulary that the systems were able to recognize

consisted of just 10 words, but modern systems are able to recognize

hundreds of thousands to millions of different words, or even text that is

not limited to a certain set of words by using subword or letter models. The

early systems were speaker dependent, meaning that they worked only

for the same speaker that was used to train the recognizer, but modern

speaker independent systems can generalize to the speech of any speaker.

Automatic speech recognizers have already since the turn of the century

worked well for planned English, such as broadcast news. Another task

where automatic speech recognition has shined is dictation of e.g. medical

reports. When the topic of the recognized speech is limited to a very specific

domain, and the statistical models used by the speech recognizer can be

adapted to the speaking style of the specific speaker, accuracy of automatic

speech recognition can approach that of a human transcriptionist. In these

applications the speaker also tries to speak as clearly as possible.

On the other hand, recognition of spontaneous conversations has re-

mained a challenge. Also, the research has clearly concentrated on English

language, and other languages usually have far less resources. For ex-

ample, in the Rich Transcription Evaluation implemented by NIST in

2003 [71], a 9.9 % word error rate (WER) was obtained in transcription

of English language broadcast news. 23.8 % WER was obtained for the

Switchboard database, which consists of recordings of telephone discus-

15

Introduction

sions of proposed topics. Speech recognition performance on Chinese and

Arabic data was significantly worse.

A huge leap forward in conversational speech recognition accuracy hap-

pened around 2010 by the introduction of deep neural network (DNN)

acoustic models. With a 7 layers deep feedforward network, a reduction

in WER from 27.4 % to 18.5 % was reported on the Switchboard database

[80]. A similar improvement was not observed in a broadcast news task

[35].

Speech recognition accuracy on read Finnish was already good before I

started to work on this thesis. In 2006, 7.0 % WER was achieved on audio

books, but due to the lack of data, a speaker dependent model was used [52].

In 2009, speaker independent models were trained, one on clean speech

from the Speecon corpus and one on the SpeechDat telephone speech corpus

[75]. Word error rates of 13.7 % and 22.3 % were obtained on these tasks

respectively, using maximum likelihood training, and even better results

with discriminative training. The success is to some extent attributed to

the use of subword language models created using the Morfessor method

[37]. The results are very good, considering that the WER numbers are

generally higher because the vocabulary is unlimited.

On the other hand, no research was done on recognizing conversational

Finnish. There are many tasks where this would be useful, for example

automatic transcription of meetings, and subtitling of broadcast conversa-

tions. There are various reasons why transcribing conversations is more

difficult than recognizing planned speech. The pronunciation of words, as

well as grammar used in conversations can be different and less coherent.

Conversational speech is not organized in sentences in the same way as

formal speech is. Instead, speech often flows continuously with filler words

used to signal a pause. The rate of speech can vary and disfluencies can

make recognition difficult. With all these differences, it would be important

to have training data that consists of actual spontaneous conversations.

When the work on this thesis began in 2012, only a few small corpora

of conversational Finnish were available. In Publication II the first se-

rious attempts of recognizing conversational Finnish speech were made.

Collection of a conversational Finnish corpus was started at Aalto Univer-

sity, and part of the corpus was dedicated as development and evaluation

data. Written conversations were collected from the Internet for language

modeling. By combining all the data at hand, 55.6 % WER was obtained.

The collected data sets are not constrained to any particular topics.

16

Introduction

Colloquial Finnish also differs substantially from the standard language

in vocabulary, and many words have alternative forms in which they can

be written and pronounced. In Publication II we showed that this amounts

to the vocabulary used in conversational Finnish text being larger than

the vocabulary size in the same amount of standard Finnish text.

Two approaches to modeling different pronunciations in Finnish lan-

guage are discussed in this thesis. Traditionally alternative pronuncia-

tions for words have been specified in a pronunciation dictionary. On the

other hand, language models can be trained on the conversational Finnish

data, where different pronunciations are written out as different word

forms. Essentially this means that the model estimates probabilities for a

sequence of pronunciations instead of a sequence of words. In practice the

approach is problematic due to the vocabularies being bigger and the data

even more sparse than standard Finnish data. One has to also consider

how to compute the recognition accuracy.

1.2 Scope and Contributions of the Thesis

This thesis is founded on research that has advanced automatic speech

recognition since the 1950s. Most importantly, Finnish language speech

recognition research has been carried out at Helsinki University of Tech-

nology, which was merged into Aalto University in 2010. As a result of the

earlier research, a Finnish language speech recognizer has been developed

that works well on clear speech. Speech utterances in the training and

evaluation data have been planned or the speakers have responded to

given situations, and the language has been close to standard Finnish.

The language and conditions in natural conversations are often more

versatile, making the speech difficult to recognize. In this thesis I have

not attempted to further improve the recognition of planned speech, but

concentrated on spontaneous conversations on unconstrained topics. The

data set I have used is especially problematic, because the speakers use

colloquial Finnish, which differs quite significantly from standard Finnish.

A simple reason why colloquial Finnish could not be recognized well, is

that there were no large corpora specifically targeted to colloquial Finnish.

An important contribution of this work is the collection of suitable training

data for the statistical models necessary for automatic speech recognition.

DSPCON corpus has been collected during 2013–2016 and contains con-

versations between students of the basic course in digital signal processing

17

Introduction

at Aalto University. Part of the corpus has been dedicated for evaluation,

and for computing the error rate, alternative word forms have been added

to the transcripts. The same evaluation data has been used throughout the

thesis, so that the progress in conversational Finnish speech recognition

can be followed.

While DSPCON contains valuable acoustic data for modeling pronuncia-

tion of Finnish in a conversational setting, the number of sentences is small

compared to the amount of text required for properly modeling a language

without limiting to any particular topic or context. Huge amounts of text

can be found from the Internet, but since we are interested in modeling

conversational Finnish, the text should match the conversational speaking

style as closely as possible. Methods for selecting matching text based on a

small sample of transcribed Finnish conversations are developed in this

thesis (Publications II and III). While such algorithms have existed before,

the contribution of this thesis is specifically in making these algorithms

work with Finnish data and perform efficiently with large amounts of data.

The rest of the thesis is devoted to modeling efforts. The thesis proposes

a discriminative pruning method for optimizing a pronunciation dictionary

(Publication I). The method is especially useful when a large number of

pronunciations are generated automatically. It is first tested on a hand-

crafted pronunciation dictionary and later applied to adapting models with

automatically generated pronunciations for foreign names (Publication

III).

Colloquial Finnish contains a lot of variation in pronunciation. A conse-

quence of the phonemic orthography (writing system) of Finnish language

is that a writer may alter the spelling of a word according to how its

pronunciation would change. Usually the colloquial writing is used in

informal written conversations, such as e-mails and conversation sites on

the Internet. Conversational Finnish models in this thesis are trained

on text that has been downloaded from conversation sites, and often is

written in an informal style that mimics the colloquial pronunciation. As a

consequence, the vocabulary is very large (Publication II).

This thesis attempts to solve the problems that follow from the very large

vocabulary and data sparsity (Publication V). Different methods for cluster-

ing words into classes are evaluated. A rule-based method is proposed for

clustering word forms that correspond to different pronunciations of the

same word. Another interesting approach is to segment words into smaller

units. Subword units created using Morfessor are evaluated, and found

18

Introduction

to outperform word models when recurrent neural networks are used for

language modeling.

Neural networks are used for language modeling in the last two articles

(Publication IV and V). Different approximations for neural networks are

evaluated that make it possible to use large vocabularies in neural network

language models. A novel method for weighting data sources in training

is tested. All the developed methods are published in TheanoLM toolkit,

including different optimization methods, layer types, sampling-based

objectives, and support for n-best list and word lattice rescoring.

Finally, we attempt to build as good speech recognition system as possible,

using deep neural network acoustic models and complex recurrent neural

network language models (Publication V). As a result, a word error rate

of 27.1 % is achieved in conversational Finnish speech recognition using

subword units. The experiments are repeated on a conversational Estonian

speech recognition task, and again a state-of-the-art result, 21.9 % word

error rate is reached.

1.3 Structure of the Thesis

Chapter 2 gives an overview of the speech recognition problem, elaborating

on some issues that are relevant in particular for recognizing conversa-

tional Finnish. It first introduces different approaches that have been

taken for transcribing speech, and then presents in more detail the most

popular, hidden Markov model (HMM) based, speech recognition frame-

work, which is used in this thesis. Then it explains the problems that

are encountered when recognizing conversational Finnish speech due to

pronunciation variation in conversations and agglutination in Finnish

language.

The main focus in this thesis is on language modeling. Chapter 3 de-

scribes the well-established techniques for training n-gram language mod-

els in detail. Then relevant variations of the standard model are presented:

class-based language models, maximum entropy models, subword models,

and variable-order training.

Chapter 4 starts by explaining the basics of modeling with artificial

neural networks, with focus on language modeling. The problems encoun-

tered in deep networks and in models with a large number of outputs are

discussed. The chapter aims to describe the techniques that were used in

the neural network models in the publications with more detail than what

19

Introduction

was possible in the articles. Some details on implementing TheanoLM are

also given.

Chapter 5 describes the work that was done on recording speech data and

collecting text from the Internet. The method that was used for crawling

web sites is explained. The steps taken to normalize Finnish text are listed,

and an overview of the text filtering methods is given.

Chapter 6 concludes the results of this thesis and suggests some direc-

tions for future research.

20

2. Automatic Speech Recognition for
Conversational Finnish

2.1 Approaches to Speech Recognition

Automatic recognition of speech is a rather complex machine learning task.

The aim is to translate a speech signal to text. This is a classification task,

but the search space is very large, as the length of the word sequence is not

limited, and the vocabulary can be large. Another thing that makes this

task more difficult than a typical classification task is that the alignment

of the text and the acoustic signal is unknown.

Early speech recognition systems in the attempted to recognize isolated

words. A digit recognizer [20] and a vowel recognizer [26] used the output of

filter banks to classify an utterance to one of the 10 words in the vocabulary.

An approach that was studied in the 1960s and 1970s was to match a speech

sample to reference templates. A template of each vocabulary word was

required. Accuracy was improved by dividing the signal into short fixed-

length segments and aligning the features extracted from the segments to

those of the template using dynamic time warping. A vocabulary of 203

words was used already in 1970 [93].

Dynamic time warping finds a mapping between the time scale of the

input signal and that of the reference template (see Figure 2.1). This

fixed mapping does not account for the uncertainties that arise from the

variability in speaking style and recording conditions. This approach also

does not scale for continuous speech. At the same time, the use of hidden

Markov models to model speech signal emerged [42]. However, it was not

until the 1980s when the theory was widely spread among researchers and

fully developed to combine Gaussian mixture emission probabilities.

The HMM approach [53] also divides the signal into fixed-length (e.g. 25

ms) segments called frames. It is assumed that the vocal tract generating

21

Automatic Speech Recognition for Conversational Finnish

Alignment

Te
m

p
la

te

Signal

Figure 2.1. Dynamic time warping aligns the signal with the reference templates, in order
to find the best matching template.

the speech is at any given time at a certain state. The state sequence {zt} is

a sequence of latent variables, meaning that they cannot be observed. The

acoustic features {ot} are observed variables, extracted from each audio

frame. The acoustic observations are assumed to be generated with certain

emission probability distribution that depends on the current state. This is

depicted in Figure 2.2. A transition probability is associated between any

two states. The state may change according to the transition probabilities,

or stay the same in the next frame.

HMMs solve the alignment problem neatly, because they do not assume

anything about the length of the audio signal. Individual HMMs can be con-

catenated, which makes continuous speech recognition possible. The signal

is no longer segmented into isolated words, rather the speech recognizer

is able to evaluate different hypotheses with different alignments, which

accounts for uncertainties in the model. Larger vocabularies can be used

by constructing words from HMMs of subword units, such as phonemes.

A pronunciation dictionary maps words to a sequence of subword HMM

models. The probabilistic formulation enables the combination of multiple

sources of information. A separate probabilistic model of the language is

used to predict which words commonly follow each other. These advances

led to the adoption of HMMs by virtually every speech recognition system

at the time.

The idea of using neural networks for modeling speech surfaced already

22

Automatic Speech Recognition for Conversational Finnish

z0 z1 z2 z3

o0 o1 o2 o3

Figure 2.2. A hidden Markov model assumes that the vocal tract is at any given time in
state zt. The state cannot be observed, but the observed acoustic features, ot,
are generated with certain emission probability distribution that depends on
the current state.

at the end of the 1980s. In a hybrid approach, a neural network is used to

estimate the emission probabilities, while the HMM framework is still used

for decoding continuous speech as a sequence of words [10]. In the begin-

ning simple feedforward networks were used. It took another two decades

before the technology and training algorithms were advanced enough to

use complex neural networks with many hidden layers that would clearly

outperform traditional Gaussian mixture emission probabilities even with

large amounts of data [35].

Although the HMM framework is still most widely used, it is not the

most elegant. The pipeline consists of many components that are hand-

engineered for a specific purpose. The framework makes assumptions

about the model structure that may not be optimal. For example, a well

known weakness of HMMs is that the output observations depend only on

the current state, not on the previous observation or the previous states.

Recent advances in neural networks have proven that neural networks are

very good at learning complex representations from data automatically,

spurring development of end-to-end speech recognition [32]. The idea is

to train a single recurrent neural network that predicts words given the

acoustic observations.

An end-to-end speech recognizer can operate on the raw audio signal,

although usually feature extraction is performed first to compress the

input. In a typical classification setting, a recurrent neural network (RNN)

outputs one class for each input. In a speech recognizer, an RNN could out-

put a sequence of letters, whose length is the number of frames. However,

it is not clear how to align the letters to form words. For example, we need

to decide whether a letter repeating in consecutive frames corresponds to

one or two letters in the word.

One method for adapting RNNs to unaligned input and output sequences

is called connectionist temporal classification (CTC) [31]. A blank label is

23

Automatic Speech Recognition for Conversational Finnish

included in the output alphabet. Any alignment can be represented as a

sequence that is as long as the input sequence, using the blank symbol to

represent a letter boundary. Given an alignment, the probability of the

utterance can be computed as the product of the frame probabilities. When

the RNN is trained, the probability of an utterance is defined as the sum

of the probabilities over the possible alignments. This training objective

can be realized using a dynamic programming algorithm.

In end-to-end speech recognition, the RNN uses history in addition to

the current input for predicting the output at any time. In principle, given

enough training data, it could learn dependencies between words. However,

in practice a language model is still needed for good results. When enough

training data is available, an end-to-end speech recognizer may achieve as

good or even better performance than state-of-the-art HMM-based systems.

2.2 Speech Recognition Using the HMM Framework

The probabilistic HMM framework allows combination of information from

multiple sources. Typically these include an acoustic model, a language

model, and a pronunciation dictionary. The pronunciation dictionary maps

words to one or more different pronunciations, possibly with different prior

probabilities. A pronunciation is defined as a sequence of HMMs, each of

which is defined in the acoustic model. The language model scores word

sequences based on which words frequently occur together in the target

language.

A choice has to be made on what the basic unit of speech modeled by

each HMM of the acoustic model is. Having a separate HMM for each

word is not realistic for large vocabularies, and would require a new model

to be trained every time a word is added to the vocabulary. The smallest

units of speech are called phones. A closely related concept is phoneme, a

group of phones that are semantically equivalent in a language. Phonemes

are a good candidate for the basic acoustic modeling unit. However, their

pronunciation often changes based on the neighboring phonemes, which

is why most current speech recognition systems, including AaltoASR and

Kaldi, use context dependent phoneme models.

The speech recognition pipeline is illustrated in Figure 2.3. In the first

step, features are extracted from the speech signal. A good set of features

is as compact as possible, while still being able to discriminate between the

speech sounds. Most speech recognizers, as well as a broad range of other

24

Automatic Speech Recognition for Conversational Finnish

Grammar

tomato T AH M EY T OW

tomato T AH M AA T OW

tomatoes T AH M EY T OW Z

tomatoes T AH M AA T OW Z

tomb T UW M

tombs T UW M Z

Lexicon

N

NG

OW

P

Phoneme HMMs

Speech Signal

Acoustic Features

State Likelihoods

Decoder

Word Sequence

Figure 2.3. Block diagram of the HMM speech recognition pipeline.

speech processing systems, use features that are based on mel-frequency

cepstral coefficients (MFCCs). Although the details such as the feature

dimensionality vary, MFCC features were used in this thesis with both

Aalto ASR and Kaldi systems, so the general idea is given below.

A natural candidate for characterizing speech is its frequency content.

Instead of describing the frequency spectrum directly, MFCC features are

based on a related concept named cepstrum. Cepstrum characterizes the

frequency content of the spectrum itself. Somewhat different definitions of

the cepstrum exist, but the idea is to consider the logarithmic frequency

spectrum as a signal, and perform another Fourier-related transform. For

MFCC features, only a small number of coefficients is wanted, so a filter

bank is applied on the power spectrum. The filters are spaced equally

in the mel scale of frequency. Discrete cosine transform is taken from a

sequence of logarithmic filter energies to obtain the final coefficients [21,

p. 359].

25

Automatic Speech Recognition for Conversational Finnish

By matching the observed features to the emission probability distribu-

tions, the state observation likelihoods of each HMM state are obtained for

each frame. The structure of the search space comes from three different

sources:

• the individual phoneme models that often consist of only three states

each,

• a pronunciation dictionary, often called a lexicon, that maps words to

phonemes, and

• a language model or a grammar that defines the allowed word sequences

and their probabilities.

The component of a speech recognizer that is responsible for finding

the best possible word sequence given the model and the observations

is called a decoder. A decoder can expand the search space dynamically

during recognition, or the search network can be compiled from finite-state

transducers (FSTs) before the recognition begins. The advantage of the

dynamic search network is smaller memory consumption, while decoding

is very fast when the network is compiled in advance.

The search space contains all the possible sequences of words from the

vocabulary used by the decoder. Unless the grammar is restricted to a

certain set of sentences, the search space is extremely large. No matter

what kind of decoder is used, it is impossible to perform an exhaustive

search. Instead, some heuristics are used to drop unlikely hypotheses at

an early stage. The most important heuristic is beam pruning—at any

given time, hypotheses whose probability is not close enough to the best

hypothesis, are pruned out.

The speech recognizers used in this thesis use the HMM framework. In

Publications I and II the AaltoASR system was used. In Publications III

and IV, both AaltoASR and the Kaldi speech recognizer [74] were used.

Most of the experiments used Gaussian mixture models (GMMs) for the

emission probabilities. The Estonian NNLM experiments in Publication III

and the experiments in Publication V used Kaldi with deep neural network

(DNN) emission probabilities. AaltoASR uses a token pass decoder that

extends the search network dynamically [38, p. 726]. Kaldi uses a search

network that is compiled from four FSTs: HMM (phoneme model structure),

26

Automatic Speech Recognition for Conversational Finnish

lexicon, grammar, and an FST that translates context dependent phonemes

to context independent phonemes.

2.3 N-best Lists and Word Lattices

It is often useful to obtain multiple hypotheses from a decoder, instead

of just the best one. As speech recognizers keep a list of the most likely

hypotheses in memory while decoding, such an n-best list can be produced

with no additional cost. When a long utterance is recognized, a list that in-

cludes sufficient alternatives for all the words can become extremely large.

A word lattice is a more compact representation of the best hypotheses.

A word lattice is a a graph, where recognized words are saved as nodes

or links. At any point of time, the decoder expands the current partial

hypotheses and performs beam pruning. Any new words that are kept

after pruning are saved in the word lattice. Usually the lattice also incor-

porates the alignment and acoustic and language model probability of the

individual words. The decoding beam controls the size of the generated

lattice.

Saving multiple hypotheses allows reordering them quickly afterwards

using new language models, and with models that would be too expensive to

use during the actual speech recognition. It also enables keyword spotting

as a postprocessing step, brings in new possibilities for the estimation of

confidence on the recognition result, and allows interactive applications

to display multiple choices for the user. N-best lists or word lattices are

also regularly used in discriminative training methods, as described in the

following sections.

2.4 Training HMM-based Acoustic Models

The parameters of an HMM model include the transition and emission

probabilities. Training an HMM-based acoustic model involves learning

the parameters for all speech sounds. Traditionally this has been based on

maximizing the likelihood of the parameters, given the observed acoustic

features {ot}, when the reference transcription w is known. In other

words, a certain HMM structure is defined by w, and the objective is to find

parameters θ that maximize the probability of the acoustic observations,

p({ot} | w, θ).

27

Automatic Speech Recognition for Conversational Finnish

Analytical solutions to the problem are not known, but the Baum-Welch

algorithm is an efficient numerical method for finding the maximum-

likelihood (ML) parameters. It is based on a general concept called expecta-

tion maximization (EM) [58]. Knowing the latent states {zt} and assuming

the form of the emission probability distribution, it would be possible to

compute the emission and transition probabilities that maximize the prob-

ability of the acoustic features. Because the latent states are not known,

the algorithm operates on the expectation of the likelihood with respect to

the conditional distribution of the latent variables given the training data.

The algorithm iterates expectation (E) and maximization (M) steps. The

E step computes statistics of the states under the current estimates of the

HMM parameters, and the M step calculates the parameter values that

maximize the expectation assuming the computed statistics. Sufficient

statistics for finding the parameters that maximize the expectation are

{pt(z | o)}, the probability distribution of the states at each audio frame,

and {pt(z, z′ | o)}, the joint probability distribution of being in state z at

frame t and in state z′ at frame t+1. These are called the state occupancies.

In order to compute the statistics, Baum-Welch uses the forward-back-

ward procedure [5, p. 168]. A forward probability is defined as the proba-

bility of observing a specific sequence of acoustic frames until time t, and

ending up in state z. A backward probability is defined as the probability

of being in state z at time t and observing a specific sequence of acoustic

frames starting from time t+ 1. The algorithm is an example of dynamic

programming. The forward and backward probabilities are computed iter-

atively for every state at every time step. Then the state occupancies can

be expressed using the forward and backward probabilities.

Given enough training data and assuming that our model is able to

represent the real probability distribution p({ot} | w), a decoder that is

based on the maximum-likelihood solution would make optimal decisions

[68]. Iterating the E and M steps improves the likelihood, but does not

necessarily converge to the global optimum. Even if the global optimum is

found, an HMM is an approximation that can never model speech perfectly.

The accuracy of the model is also limited by the amount of available

training data.

For the above reasons, even though the maximum-likelihood model is

often close to optimal, better models for practical speech recognition tasks

can be found by discriminative training. The idea is to maximize the

discrimination between the correct transcription and other hypotheses,

28

Automatic Speech Recognition for Conversational Finnish

instead of just maximizing the probability of the correct transcription. A

maximum-likelihood model is still used as a starting point for discrimina-

tive training.

Several different discriminative criteria have been proposed. One popular

choice is maximum mutual information (MMI) estimation. It attempts to

make the mutual information between two random events, the reference

transcription w and the observations {ot}, as large as possible [4]. This is

equal to normalizing the ML objective by the probability of the observed

signal, which in turn is a sum over all possible word sequences: p({ot}) =∑
w p({ot} | w)p(w)

The MMI criterion attempts to increase the likelihood of the correct

transcription, but simultaneously decrease the likelihood of all possible

word sequences. Clearly evaluating all the possible word sequences is

intractable in continuous speech recognition with large vocabularies. In

practice it is enough to operate on word lattices that incorporate the

most likely hypotheses of each training utterance [95]. The lattices are

generated once and then used during several training iterations.

Most of the acoustic models in this thesis were trained using the maxi-

mum-likelihood principle. Several Kaldi models in Publication III and the

English Kaldi models in Publication IV were refined using the discrimina-

tive MMI criterion.

2.5 Pronunciation Modeling

A pronunciation dictionary defines the pronunciation of every word that

an HMM-based speech recognizer is able to recognize. More specifically,

it maps each word to a sequence of phoneme HMMs. The way in which

a spoken language is written is called an orthography of the language.

Finnish orthography is phonemic, letters more or less corresponding to the

International Phonetic Alphabet (IPA). With regard to automatic speech

recognition, this feature of Finnish language makes it easy to create the

pronunciation dictionary using simple rules. Other languages may not

be written in as systematic way. In particular, the pronunciation of most

letters in English text varies from word to word. English speech recognizers

use pronunciation dictionaries that are at least partly created by human

experts.

29

Automatic Speech Recognition for Conversational Finnish

2.5.1 Modeling Pronunciation Variation in a Dictionary

Language evolves and words are pronounced differently in different di-

alects. Pronunciation also often changes in conversations, and consecutive

words tend to fuse together to make speech more fluent. Often multiple

pronunciations are defined in the pronunciation dictionary for some words,

such as the English word tomato. However, modeling pronunciation varia-

tion that depends on the word context can be challenging. One approach

is to define alternative pronunciations for multiwords, sequences of a few

words that are frequently pronounced differently together [25]. These

pronunciations can be added manually, or some automatic method can be

developed to generate new variants. Different prior probabilities can be

given for the variants.

Pronunciation variant probabilities can be computed from the relative

frequencies of the pronunciation variants in phonetic transcripts. Hand-

written phonetic transcripts are rarely available for large corpora, but

they can be obtained by aligning word-level transcripts using the Viterbi

algorithm. In Publication I, multiword probabilities were computed after

first generating phonetic transcripts of the training data using a speech

recognizer. It is possible to use multiwords without changes in the decoder

by estimating a language model from text where the corresponding word se-

quences have been substituted by multiwords. However, it is more accurate

to train the language model on single words and split multiwords in the

decoder [25]. In Publication I the decoder was modified to split multiwords

into individual words before computing language model probabilities.

It might be tempting to include as much colloquial pronunciation variants,

and pronunciations used in different dialects, as possible. The problem is

that the chance of confusion between the words is increased by adding new

pronunciations. Especially if pronunciations are added by some automatic

method, some of the new pronunciations increase confusability without

improving the recognition. Publication I presents a novel method that can

be used to prune harmful pronunciations from a dictionary with a lot of

pronunciation variants.

The pronunciation pruning method was inspired by discriminative meth-

ods for training acoustic models. It operates on word lattices that are

generated from all training utterances. While word lattices usually in-

clude just one instance of a word that represents all its pronunciation

variants (or the most likely variant), for pruning we generated lattices that

30

Automatic Speech Recognition for Conversational Finnish

include a separate instance for all pronunciation variants. This allowed

us to compute exactly the effect on recognition accuracy from removing a

pronunciation variant. Initial tests were carried out in Publication I on an

English multiword dictionary that was created by phoneticians, showing

only small improvement. Later in Publication III the method was tested

for pruning automatically generated foreign name pronunciations. Pronun-

ciation pruning reduced recognition errors in the foreign names in Finnish

broadcast news recordings by 2 %.

2.5.2 Pronunciation Variation in Finnish Written Conversations

There is a lot of variation in how colloquial Finnish is spoken. Because the

orthography is very systematic, these changes are often written as well,

which provides an interesting insight into colloquial speech. Phonological

processes such as elision (miksi → miks) and internal sandhi (menenpä →
menempä) can be visible in written colloquial Finnish. There is not a single

correct way to transcribe a colloquial word. The same word can be con-

densed in multiple ways, depending on how informal the speaking style is,

and how clearly the speaker wants to pronounce the word in the particular

occasion. Furthermore, it is not always easy to tell the exact phonetic form

of a spoken colloquial word, as the sounds may be somewhere in between

two phonemes. Here are 20 ways to say the word “ninety” in Finnish, all

of which also appear in written form on the Internet: yhdeksänkymmentä,

yhdeksänkymment, yheksänkymmentä, yheksänkymment, yhdeksäkym-

mentä, yheksäkymmentä, yheksäkymment, yhdeksänkytä, yhdeksänkyt,

yhdeksäkytä, yhdeksäkyt, yheksäkytä, yheksäkyt, yheksänkytä, yheksänkyt,

yhdekskyt, yhekskytä, yhekskyt, yheskytä, yheskyt.

The relaxed colloquial forms are often ambiguous. In particular, gram-

matical information, that is normally conveyed by inflection, may be lost.

Below are some example sentences, first in standard Finnish, then one

or more ways in which they can be pronounced or written in informal

conversations:

• maalata kattoa → maalata kattoo (to paint a/the roof)

• porata kattoon → porata kattoo (to drill into a/the roof)

• katsoa → kattoa/kattoo (to watch)

31

Automatic Speech Recognition for Conversational Finnish

• hän katsoo → se kattoo (he/she watches)

• he katsovat → ne kattovat/katsovat/kattoo (they watch)

• mennä katsomaan → mennä kattomaan/katsoo/kattoo (to go to watch)

Different word forms are used in different situations and by different

speakers. When the context does not give enough clues about the exact

meaning of an ambiguous word, the speaker has to use a word that is

closer to the standard form. For example, in relaxed speech, minä menen

(I [will] go) can be elided to mä meen or even mä mee. Sometimes the

personal pronoun is omitted, as the inflection can express the person; for

example, one can answer a question simply by saying meen. Using mee

alone could be confusing, however, as that is most often used to mean the

imperative form mene.

The same phonetic form being used for many different meanings is

obviously challenging for modeling the language. In the example above,

the same word form kattoo is used for two inflections of the word katto (a

roof) and four inflections of the word katsoa (to watch). Adding kattoo as an

alternative pronunciation for the six word forms would increase confusion

between the words. Especially so because the pronunciation probabilities

are independent of the context.

Finnish dictionaries with alternative colloquial pronunciations are not

available. An enormous amount of work would be required to create such

a dictionary considering all the pronunciation variation in conversational

Finnish. Because different pronunciations are expressed as different word

forms in Finnish conversations, different pronunciation forms could in the-

ory be found by clustering words in written conversations using automatic

methods. Then harmful pronunciations could be pruned out using the

discriminative method presented in Publication I. We use an alternative

strategy in this thesis. Different pronunciation are modeled as different

words in the language model. Each word form has just one pronuncia-

tion, which can be created automatically using rules based on the Finnish

orthography.

There is a subtle difference between modeling the pronunciation variation

in the language model and modeling it in the dictionary: The pronunci-

ation probabilities in a dictionary are independent of the context, while

a language model uses the context as a cue for predicting the next word

32

Automatic Speech Recognition for Conversational Finnish

form. Thus using the language model to predict pronunciations should in

principle reduce the confusability between words. The downside is that

this increases data sparseness—there are even less examples of different

sequences of word forms. This issue is discussed in the next section.

2.6 Data Sparseness in Finnish Conversations

Vocabulary size influences the difficulty of language modeling in many

ways, so we wanted to compare the vocabulary size in standard and conver-

sational Finnish texts in Publication I. On one hand, the different ways in

which words are written in Finnish conversations increase the vocabulary.

On the other hand, we generally tend to use a simpler vocabulary when

having a conversation, and many words are reduced to short ambiguous

forms. We showed that on the whole, Finnish online conversations used

a larger set of different word forms than the the same amount of formal

speech.

A very large vocabulary is challenging both from the perspective of

computational efficiency and model performance. Traditional n-gram

language models that are based on statistics on how frequently a sequence

of words is observed in the training data regard words as separate entities,

meaning that they cannot generalize what they learn from one word to

other similar words. In the following example, the word luentoa appears

in two context that are semantically very similar, even though the word

forms are different:

• mullon maanantaina kaks luentoa

• mulla on tiistaina kolme luentoa

The first sentence means “I have two lectures on Monday”, and the

second sentence means “I have three lectures on Tuesday”. Their colloquial

pronunciations have been written down phonetically. There are actually a

large number of different ways in which these sentences could be written.

Our intuition says that the probability of the word luentoa (lectures) in one

context is most likely similar to its probability in the other, but traditional

n-gram language models do not see any similarity between these contexts.

We say that the data is sparse, because a lot of training data is needed to

model the word in every possible context.

33

Automatic Speech Recognition for Conversational Finnish

In this thesis it is shown that two language modeling techniques that

generalize better to unseen contexts are useful in modeling conversational

Finnish. Class-based language models, presented in Section 3.3, can be

used assuming we have a method for grouping similar words together.

Neural network language models, presented in Chapter 4 automatically

learn a mapping of words to continuous-valued vectors, with semantically

similar words close to each other in the vector space.

Another prominent feature of Finnish language with regard to automatic

speech recognition is agglutination, which further increases the number

of different word forms and data sparsity. Most words actually consists of

smaller units, called morphs, that bear some meaning. Subword models,

presented in Section 3.4, model language as a sequence of units that are

shorter than word. In a sense they can be seen as a solution to the same

problem as class-based models—both reduce data sparsity by decreasing

the vocabulary size. Publication V compares these approaches.

2.7 Evaluating Speech Recognition Performance

Measuring the performance of a speech recognizer is very well established.

The aim is simply to produce as few errors as possible. The standard error

measure is the word error rate, defined as the minimum number of word

substitutions (Ns), deletions (Nd), and insertions (Ni) that are needed to

correct the result, relative to the total number of words in the reference

transcription (Nw):

WER =
Ns +Nd +Ni

Nw
(2.1)

To put this into perspective, 10 % WER can be considered very good for

an automatic speech recognizer, while a value larger than 100 % means

that more edit operations are needed to correct the result, than would

be needed to write the text starting from scratch. The performance of

an automatic speech recognizer can also be compared to that of a human

transcriber. The accuracy of a transcription created by a human obviously

depends on many factors, including how difficult the speech is to recognize,

whether the transcriber is allowed to listen to the audio repeatedly, and how

experienced the transcriber is. Earlier studies have found the accuracy of

a nonprofessional transcriber on read English speech (Wall Street Journal

corpus) to be around 2 % [24] and the accuracy of a professional transcriber

on spontaneous English to be anywhere between 4 % and 11 % depending

34

Automatic Speech Recognition for Conversational Finnish

on the corpus and how carefully the speech is transcribed [96].

It can be argued that for agglutinative languages WER is too inaccurate.

A related measure called letter error rate (LER) or character error rate

(CER) has also been commonly used in for example broadcast news tasks

that contain standard Finnish. Perhaps the most typical error is an in-

correctly recognized suffix. Such error would increase WER by 1/Nw. On

contrast, LER would be increased by the ratio of incorrect characters to

the total number of characters in the text, meaning that LER penalizes

less for errors that cause only a few letters to be incorrectly recognized,

compared to errors that cause all or most of the letters of a word to be

incorrectly recognized. There are several reasons why WER is still used to

evaluate the Finnish tasks as well throughout this thesis:

• WER has become the standard measure for assessing speech recognition

accuracy, while LER is mostly used among Finnish researchers. Thus

WER is more meaningful to most researchers.

• The purpose of LER is to penalize more for completely incorrect words,

but there is rarely confusion between words that are not phonetically

similar (in which case they are for the most part written using the same

characters).

• Recognizing suffixes correctly is important for the understandability of

text, so this thesis aims to develop good language models that can help

the recognizer to select the grammatically correct word forms from other

phonetically similar forms. Thus one may argue that incorrectly inflected

words should be penalized as much as incorrect words.

• Recognizing a few characters incorrectly may not just cause the inflection

to change, but can easily change the meaning of the word to something

completely different. In this case the error is as severe as if all the

characters are recognized incorrectly.

• While incorrect inflections should count as errors, pronunciation varia-

tion should not. Alternative word forms were included in the reference

transcripts for different pronunciations. This is explained below. It would

be possible to define alternative word forms and compute the minimum

LER, although it might be confusing that recognizing a word incorrectly

35

Automatic Speech Recognition for Conversational Finnish

would be penalized less if the word has many alternative pronunciations.

As discussed in the previous section, conversational Finnish vocabulary

contains many similar surface forms of the same word, not just because of

inflection, but also because the different pronunciations are expressed in

written words. Comparing the recognition result to the phonetically exact

transcription is not suitable for evaluating a speech-to-text task. The error

rate would fluctuate as many alternative pronunciations would have very

similar probabilities. Even for a human transcriber, it is sometimes difficult

to tell which phonemes the speaker used. This problem can be solved by

defining alternatives for each word in the transcripts, and computing the

minimum WER considering the alternative ways to write the sentence.

In all the conversational Finnish experiments in this thesis, evaluation

set transcripts included alternations for different pronunciation variants.

The alternations also included compound words written separately. Defin-

ing the alternations was a laborious task, since the acceptable ways to

write a word depend on its meaning in the particular sentence, and on

the other words in the sentence, i.e. the context needed to be considered

when adding the alternations. Those were systematically created for the

development set only in Publication V. The reference transcripts with

alternations have been released with the DSPCON corpus.

Regardless of the challenges discussed above, measuring accuracy of

speech recognizer output is straightforward. However, the performance of

a speech recognizer depends on many factors such as the decoding param-

eters, pronunciation dictionary, and how well the acoustic and language

models perform together. When developing language models, it would

be convenient to evaluate the language model alone, disregarding all the

other factors. Section 3.6 discusses how language models can be evaluated

independently.

36

3. Statistical Language Models

3.1 Probabilistic Model of Language

A statistical language model can be used to evaluate how likely a sentence

would occur in a given language. These probabilities are estimated from a

large text corpus. Language models are useful in many applications, such

as machine translation, information retrieval, and handwriting recognition.

In speech recognition, a language model assigns a prior probability to every

word sequence, which is combined with acoustic likelihoods to evaluate the

probabilities of different hypotheses.

In some applications a speech recognizer can be restricted to a set of

sentences defined by a grammar. In others a statistical language model

is trained that should be able to assign a probability to every possible

word sequence—even those that do not occur in the training corpus. The

most important property of a statistical language model is the ability to

generalize to unseen sentences.

The vast majority of statistical language models are based on factorizing

the probability distribution of a word sequence into the product of word

conditional probabilities using the chain rule of probability:

p(w1, . . . , wT) =
T∏
t=1

p(wt | w1, . . . , wt−1) (3.1)

The word conditional probabilities on the right side of Equation 3.1 easily

become too low to be representable using double-precision (64-bit) floating-

point numbers. The standard way of solving this problem is to compute

probabilities in log space. This means that instead of a product, a sum of

log probabilities is computed:

37

Statistical Language Models

log p(w1, . . . , wT) =

T∑
t=1

log p(wt | w1, . . . , wt−1) (3.2)

Traditionally the model is simplified for computational reasons by mak-

ing the Markov assumption, i.e. assuming that the probability of the next

word depends on only a fixed number of previous words. Such models

are called n-gram language models, because they can be estimated using

only n-gram1 statistics. The rest of this chapter presents variations of

n-gram language models that are estimated using interpolation or back-off

techniques. Chapter 4 is devoted to neural network language models.

3.2 N-gram Language Models

N-gram models have dominated language modeling for several decades.

They are based on the assumption that only the previous n− 1 words can

influence the probability of any word. The notation hn
t will be used to

denote the preceding n words at time step t. Equation 3.1 is replaced with

an approximation where word probabilities are conditioned only on hn−1
t :

p(w1, . . . , wT) =
T∏
t=1

p(wt | hn−1
t) (3.3)

Generally models that are based on such an assumption are called (n−1)th

order Markov models.

N-gram language models are still used in most of the speech recognizers

during the first recognition pass, because they are simple and very effi-

cient to use. In a speech recognizer, the search space is greatly reduced,

because all the partial hypotheses that end in the same n− 1 words can

be recombined by dropping all but the best hypothesis. When using more

advanced language models, typically decoding is done in multiple passes.

The first pass is performed using an n-gram model, quickly evaluating

numerous hypotheses. The best hypotheses are saved in a word lattice,

which can be decoded using more complex language models. In all the

speech recognition experiments in the publications of this thesis, n-gram

models were used during the first pass.

The maximum likelihood estimate for p(w | hn−1) is the relative fre-

quency of word w in the context hn−1:

1An n-gram is simply a sequence of n words.

38

Statistical Language Models

pML(w | hn−1) =
c(hn−1, w)∑
w′ c(hn−1, w′)

, (3.4)

where c(w) is the count of n-gram w in the training data. The probability

in Equation 3.4 is nonzero for n-grams that occur in the training data.

Those estimates are the parameters of the model. Because the number of

parameters is not fixed, the model is said to be nonparametric.

Different variations of the n-gram model have been proposed that modify

Equation 3.4 to generalize to unseen n-grams. They work generally by

reducing the probability of those n-grams that occur in the training data,

and distributing the discounted probability mass to unseen n-grams, es-

sentially smoothing the probability distributions. Usually these methods

combine information from n-grams of different lengths by backing off or

interpolation.

3.2.1 Smoothing

A back-off model [45] discounts the probability of the n-grams
(
hn−1, w

)
that occur in the training data by coefficient d(hn−1, w) and distributes the

discounted probability mass to n-grams of length n− 1. The probability of

unseen n-grams is defined recursively:

pBO(w | hn−1) =

⎧⎪⎨
⎪⎩
d(hn−1, w) pML(w | hn−1), seen n-grams

β(hn−1) pBO(w | hn−2), unseen n-grams
(3.5)

The back-off weights β(hn−1) are chosen to normalize the conditional

probability distribution.

Models of different order can also be combined by interpolation. A recur-

sive definition is often used:

pI(w | hn−1) = λ(hn−1) pML(w | hn−1)

+
(
1− λ(hn−1)

)
pI(w | hn−2)

(3.6)

The interpolation weights λ(hn−1) can be optimized on a held-out set, but

the optimization requires some consideration. We expect a weight to be

higher when the corresponding maximum likelihood estimate pML(w |
hn−1) is more reliable, i.e. when the context hn−1 occurs frequently in the

training data. [43]

Many smoothing methods can be seen as a variation of the back-off or

interpolation scheme described above. Kneser–Ney smoothing [50] has

39

Statistical Language Models

been particularly successful. The most important novelty is that for any

order k < n, the n-gram counts in the maximum likelihood estimate are

replaced by so-called continuation counts:

pcontinuation(w | hk−1) =
N1+(·,hk−1, w)∑
w′ N1+(·,hk−1, w′)

(3.7)

N1+(·,w) is the number of different words that precede the n-gram w.

When k > 1, the continuation probability in Equation 3.7 is also smoothed.

Kneser and Ney used absolute discounting: instead of discounting the

maximum likelihood estimate by a factor d(hn−1, w) as in Equation 3.5 or

λ(hn−1) in Equation 3.6, they subtracted a fixed number from the numera-

tor of Equation 3.7. The intuitive explanation why Kneser–Ney smoothing

works well is that when there are only few different words in the training

data that precede w, and w′ is not one of them, we should give w a low

probability after w′. On the other hand, if w follows many different words

in the training data, it is more likely that it will also appear in a new

context.

Chen and Goodman proposed modified Kneser–Ney smoothing [13],

which has been used throughout this thesis. It combines the estimators of

different order using an interpolation scheme that is a bit different from

Equation 3.6: first the higher-order estimate is discounted and then a

weighted lower-order estimate is added. Additionally, while the original

Kneser–Ney smoothing discounted a fixed number, the modified version

discounts a different number depending on the count itself.

3.2.2 Maximum Entropy Models

The previous section discussed backing off and interpolation for combining

n-gram models of different order. A third technique is worth mentioning,

even though it was not used in this thesis. Maximum entropy is a theoret-

ically well justified principle for combining statistical knowledge. In the

context of language modeling, the knowledge is usually n-gram statistics,

for example the n-gram counts up to a given maximum order. The idea

is to select a probability distribution that is consistent with the statistics,

and otherwise as uniform as possible.

Maximum entropy language models [9] seek to maximize the entropy of

40

Statistical Language Models

the target word conditional on the context:2

H(W | Hn−1) = −
∑

hn−1,w

p(hn−1, w) log p(w | hn−1) (3.8)

The conditional entropy in Equation 3.8 measures the uncertainty in the

output, when the context is known. Maximizing it is equivalent to selecting

as uniform output distribution as possible.

The constraints are expressed using feature functions {fi(hn−1, w)}, bi-

nary indicators that select particular n-grams. The constraints impose that

the expectation of the feature probability must match the training data.

The solution to the constrained optimization problem can be expressed

using Lagrange multipliers {λi}, and has the form of a log-linear model:

pME(w | hn−1) =
exp(

∑
i λifi(h

n−1, w))∑
w′ exp(

∑
i λifi(hn−1, w′))

, (3.9)

It can be shown that the maximum entropy model is actually the log-linear

model that maximizes the likelihood of the training data [9, p. 9].

3.3 Class-based Language Models

In Finnish and other highly agglutinative languages, the number of differ-

ent word forms that appear in a corpus is huge, and most word forms are

used very rarely. In conversational Finnish the phonological processes that

transform words are also visible in written form. As discussed in Section

2.6, it becomes very difficult to reliably estimate the probability of the rare

word forms in new contexts. This can be helped by grouping words into

classes and estimating probabilities for class n-grams.

The most common formulation of a class based language model assumes

that every word belongs to exactly one class. We denote c(w) the function

that maps words to classes. The probability of a word within its class

can be made dependent on the history, but usually it is estimated as the

relative frequency of the word within the class, regardless of the history

[11]:

p(w | hn−1) = p(c(w) | c(hn−1)) p(w|c(w)), (3.10)

2In practice, the reasonable assumption is made that the empirical probability
from the training data can be used as the marginal probability of the context:
p(hn−1, w) = pML(h

n−1) p(w | hn−1)

This modification avoids normalization of model probabilities over the possible
contexts [76, p. 13].

41

Statistical Language Models

where c(hn−1) denotes a sequence of the previous n− 1 classes.

In the previous section we assumed that the basic unit that is modeled

is a word, but p(c(w) | c(hn−1)) can be modeled using all the mentioned

techniques easily by simply replacing words with the corresponding class

in the training data. Both n-gram and neural network models based on

word classes were used in Publications IV and V. Section 3.8 provides an

overview of how the word classes were created in those publications.

3.4 Subword Language Models

A language model estimates the probability of any sentence, usually as

the product of the conditional probabilities of the words in that sentence.

Subword language models simply use the product of the conditional prob-

abilities of some smaller units than words. This is very straightforward

in principle, but before such models can be used for speech recognition,

one has to determine 1) how the subword units are derived, 2) how word

boundaries are represented, and 3) how the pronunciations of the subwords

are derived.

Because Finnish orthography is phonemic, subword pronunciations can

be generated using the same rules that are used to generate word pronun-

ciations. In English speech recognition, subword units have been used

mostly in recent end-to-end systems. As described in Section 2.1, such sys-

tems use a single DNN that outputs letters, without modeling the phoneme

acoustics, language, and word pronunciations separately.

A natural candidate for subword units in synthetic languages is morphs,

the smallest grammatical units in a language. Words can be segmented to

morphs using a morphological analyzer or using statistical methods [36].

Both approaches can work well, but morphological analyzers recognize

only a certain vocabulary, and there are no morphological analyzers that

recognize colloquial Finnish word forms.

3.4.1 Morfessor

Morfessor is a family of unsupervised methods for splitting words into

smaller fragments [18]. The Baseline version of Morfessor was used for

creating subwords in Publications III and V and is described here. The

resulting units resemble linguistic morphs, and are often called statistical

morphs or just morphs. Two implementations of the method [17, 94]

42

Statistical Language Models

have been published.3 Statistical morphs have been successfully used in

speech recognition of many agglutinative languages [52, 15]. Compared

to word models that were limited to typical vocabulary sizes of the time,

subword models based on statistical morphs improved speech recognition

considerably.

The objective is to learn a subword unigram model from a corpus. The

assumption that the subword probabilities are independent of the context

is clearly false, but seems to work in practice and enables an efficient

search algorithm [94, pp. 13–16]. The model parameters θ define the

vocabulary of subword units that in the rest of this discussion are called

morphs, and the unigram probabilities of the morphs. There are generally

multiple ways in which a corpus can be segmented into units defined by

the morph vocabulary. During model training, a particular segmentation

is assumed for each word. After the model is learned, it is possible to find

a better segmentation using the same morph vocabulary.

The cost function that Morfessor defines is inspired by the minimum

description length (MDL) principle [77]. The cost can be interpreted as

the minimum number of bits required to encode the model and the data

using the model [84]. However, a more recent interpretation formulates

the task as maximum-a-posteriori (MAP) estimation of the parameters

θ. The posterior probability of the parameters given the training data

is p(θ | w), which using the Bayes’ theorem and by taking the logarithm

turns into the following cost function:

C(θ,w) = − log p(θ)− log p(w | θ) (3.11)

The Bayesian interpretation of probability allows treating θ as a random

variable and defining the prior distribution p(θ) to express our uncertainty

on the model parameters without any additional knowledge.

The likelihood of the parameters θ is the probability of a segmented

training corpus w given the parameters p(w | θ). It can be computed as

the product of the maximum-likelihood unigram probabilities, which are

the relative frequencies of the morphs in the segmented training data.

The prior can be derived by assuming the following production model

for the training corpus. There is a given probability distribution over the

letters of the alphabet, which includes a morph boundary symbol. The

size of the morph vocabulary |V | is drawn randomly, and then enough

3The latest version of the Morfessor tool is available on GitHub:
https://github.com/aalto-speech/morfessor

43

Statistical Language Models

letters are generated for such a vocabulary. Then the total token count

of the corpus is drawn randomly, and this is distributed to the morphs to

obtain the individual morph counts c(mi). Finally, the corpus is generated

randomly according to those counts.

From the above assumptions, noninformative priors are derived for the

probabilities of the morph strings and their counts [94, p. 7]. The relative

frequency of a letter in the training data is taken as the probability of the

letter. The probability of a morph strings is the product of the probabilities

of the letters in the string. This is multiplied by |V |! to obtain the probabil-

ity for an unordered vocabulary. Probabilities for the morph counts c(mi)

are obtained using a binomial coefficient, noting that each distribution of

the total token count
∑

c(mi) to |V | individual morphs is equally likely:

p(c(m1) . . . c(m|V |)) = 1/

(∑
c(mi)− 1

|V | − 1

)
(3.12)

One way to look at MAP training is as regularization of maximum-

likelihood training. Generally splitting words into sequences of smaller

units does not increase the likelihood.4 The likelihood increases when a

morph vocabulary is chosen that is close to the word vocabulary. The prior

probability increases when a vocabulary is chosen that contains fewer and

shorter morphs.

Intuitively, minimizing both terms in Equation 3.11 should produce a

concise subword vocabulary that can model the training data well. Mini-

mizing just the first term would produce a small vocabulary that cannot

represent the data efficiently, whereas minimizing the second term would

result in a large vocabulary that can represent the corpus using few tokens.

It may be useful to add a hyperparameter α to control the balance between

these two objectives [51]:

C(θ,w) = − log p(θ)− α log p(w | θ) (3.13)

The standard training algorithm uses a greedy search that splits words

and subwords recursively. At any given time, the model defines the seg-

mentation of each word. The algorithm starts by each word forming a

single morph. At its simplest, the algorithm processes one morph at a time.

4This is easy to understand by thinking about the set of all possible sentences,
which will share the total probability mass. A word vocabulary can be used to
model sentences that contain only words from the vocabulary, resulting in highest
likelihood. Morphs can represent a larger set of sentences than words. Letters can
represent all the sentences that can be written using the alphabet, distributing
the probability mass to an even larger set of sentences.

44

Statistical Language Models

All possible ways to split the morph into two are considered along with the

possibility of not splitting it. The one that minimizes the cost is selected.

[94, pp. 13–15]

In the end there are multiple ways to segment the corpus using the

created morph vocabulary. The probability of different segmentations can

be computed using the morph probabilities given by the model. After the

training finishes, the best segmentation for each word can be found using a

modified Viterbi algorithm. In this formulation, the hidden state sequence

consists of morphs, and the observations are letters. Thus one hidden state

corresponds to multiple observations. [94, pp. 11–12]

3.4.2 Maximum-Likelihood Models

As mentioned in the previous section, the maximum-likelihood word model

has higher likelihood than subword models, and further splitting subwords

generally does not increase the likelihood. Morfessor uses the prior proba-

bility of the model parameters to regularize the maximum-likelihood train-

ing. An alternative is to optimize the likelihood of a unigram model, but use

some heuristics to split words into smaller units. A simple search strategy

that optimizes the likelihood alone iterates segmenting the training text

using a subword vocabulary, and creating new subwords by resegmenting

a word randomly if it meets specific criteria [16].

A different model altogether was used in two experiments in Publication

III. It models text as a sequence of latent variables called multigrams that

give rise to variable-length letter sequences up to some maximum length

[22]. Only the concatenation of the letter sequences is observed. The model

can be used to infer the boundaries of the multigrams, for example word

boundaries from concatenated words, or subword boundaries from words.

Generally it is possible for the same multigram to emit different letter

sequences in order to model e.g. corrupted text [22, p. 230]. When using

multigrams to model subwords, we assumed that the same multigram

always emits the same letter sequence.

The parameters of the model are the prior probabilities of the multi-

grams. The algorithms that are used for estimation of the parameters

and segmentation of the corpus are similar to those that are used to do

inference on hidden Markov models (HMMs), but they are adjusted to work

with a sequence of variable-length observations—they process text letter

by letter, but compute probabilities for multigrams.

Segmenting text means finding the most likely multigram sequence,

45

Statistical Language Models

given the current model parameters. A Viterbi search is used in the same

way as Morfessor segments words after training. The maximum-likelihood

parameters can be estimated using expectation maximization (EM). The

EM algorithm iterates by re-estimating the parameters so that they max-

imize the expectation of the likelihood, with regard to the probability

distribution of the different segmentations under the current estimates of

the parameters. A forward–backward procedure can be used to compute

the probability of a multigram (in this case a subword) occurring at given

position, which gives an efficient parameter re-estimation formula [22,

p. 227]. An approximation is also possible by iterating Viterbi segmenta-

tion and re-estimating the parameters as the relative frequencies of the

subwords.

The Greedy 1-grams (G1G) [92] strategy was used to segment text in

two experiments in Publication III. Target size of the vocabulary is set

explicitly. G1G starts from a large subword vocabulary. First the EM

algorithm is used to find probabilities for the subwords, and an iterative

process is used to remove low-probability subwords. Then a finer pruning

is done by removing subwords that decrease the likelihood least, until a

desired vocabulary size is reached. The change in likelihood is estimated

by segmenting the text using Viterbi with and without the subword in

the vocabulary. This approach has worked well with large corpora and

reasonably large subword vocabulary sizes.

3.5 Combining Multiple N-gram Language Models

When a single large corpus is not available for the target language, com-

bining data from multiple sources becomes an issue. Simply concatenating

all the data may not give the best result, if the corpora differ in size and

relevance. One possibility is to train a separate model from each corpus

and interpolate probabilities from the component models, leading to the

following model:

p(w | hn−1) =
∑
j

λj pj(w | hn−1) (3.14)

Interpolating the probabilities during inference from multiple models is

slower and complicates the system. A more practical approach that was

used in Publication II, III, IV, and V is to combine the component models

into a single model whose probabilities approximate model interpolation

46

Statistical Language Models

[89]. All n-grams that can be found in any of the component models are as-

signed a probability that is a weighted average of the original probabilities.

If the n-gram does not exist in all the component models, some component

probabilities may be computed by backing off. Then the back-off weights of

the final model, β(hn−1) in Equation 3.5, are recomputed to normalize the

model.

The mixture weights can be optimized on the development data using an

expectation-maximization (EM) algorithm [58, pp. 13–16]. The algorithm

was used to derive weights for the mixture models in this thesis, except

for the subword models in Publication V, where we found hand-tuning

necessary. The algorithm can be derived from the assumption that each

word is generated by just one of the component models, indicated by the

random variable Z. The mixture weights are interpreted as the probability

that a random word is generated by the corresponding component, λi =

p(Z = i). This is similar to how the HMM parameters were estimated by

iteratively computing the state occupancies in Section 2.4.

The latent variables {zt} are vectors that indicate the components that

generated the words {wt}. If word wt was generated by the mixture compo-

nent i, zti = 1 for the ith element of the vector. Knowing the values of the

vectors, the maximum-likelihood estimates for the mixture weights could

be computed as the proportion of words generated by the corresponding

component:

λ̂i =
1

T

∑
t

zti, (3.15)

where T is the total number of words. However, in the absence of those

values, the algorithm maximizes the expectation of the likelihood, with

respect to the conditional distribution of the latent variables given the

development data.

In the expectation (E) step of the algorithm, sufficient statistics are

computed for the expectation under the current estimates of the weights

{λi}. For each word wt in the context hn−1, the probability that the word

was generated by component i is denoted τti:

τti = p(Zt = i | wt,h
n−1
t)

=
p(Zt = i, wt | hn−1

t) p(hn−1
t)

p(wt | hn−1
t) p(hn−1

t)

=
λi pi(wt | hn−1

t)∑
j λj pj(wt | hn−1

t)

(3.16)

47

Statistical Language Models

Now the expectation of the complete-data (including the latent variables)

log likelihood for the new mixture weights {λ∗i } can be expressed using

{τti}:

∑
t

E
[
logL({λ∗i } | zt, wt)

]
=
∑
t

∑
i

τti log p(zti, wt | hn−1
t , λ∗i)

=
∑
t

∑
i

τti
[
log p(zti | λ∗i) + log p(wt | hn−1

t)
]

(3.17)

In the maximization (M) step, the new mixture weights are selected to

maximize the expectation in Equation 3.17. Only the left term depends on

the mixture weights, leaving the following function to be maximized:

∑
t

∑
j

τti log p(zti | λ∗i) =
∑
t

∑
j

τti log λ
∗
i (3.18)

The maximum-likelihood estimates can be computed as in Equation 3.15,

but averaging the membership probabilities τti instead of the latent indica-

tor variables zti.

By iterating the E and M steps, the algorithm converges to a solution

that may not be the global optimum, but most of the time works reasonably

well.

3.6 Evaluating Language Models

Cross entropy is often used to evaluate how well a statistical model predicts

the outcome of a random phenomenon. When evaluating a language model,

a word sequence w = w1, . . . , wT is seen as T samples from some random

phenomenon whose probability distribution is not known. Empirical cross

entropy of the observed word sequence is defined to approximate the

cross entropy between the unknown distribution and the word conditional

probabilities p(wt | w1, . . . , wt−1) predicted by the language model (see

Equation 3.1):

H(w, p) = − 1

T

T∑
t=1

log p(wt | w1, . . . , wt−1) = − 1

T
log p(w) (3.19)

The standard measure of language model performance is however (em-

pirical) perplexity, which is used in the evaluations throughout this thesis.

It is defined as the exponent of empirical cross entropy:

48

Statistical Language Models

PP (w, p) = exp(H(w, p)) = exp(− 1

T
log(p(w))) =

1

p(w)

1
T

(3.20)

The lower the perplexity value, the better the model fits the data.

Equation 3.20 does not define what happens when the word sequence

contains unknown words, i.e. when p(wt | w1, . . . , wt−1) is not defined.

There are two approaches that have commonly been used:

• Closed vocabulary. Unknown words are simply ignored, meaning

that they are not taken into account when computing p(w), and they are

not included in the word count T .

• Open vocabulary. An unknown word token (typically <unk>) is in-

cluded in the vocabulary and determines the probability of all words that

are outside the vocabulary. The probability can be defined as a constant

that is discounted from the observed unigram probabilities, or it can be

estimated by replacing all words in the training data that are outside

the vocabulary with the <unk> token.

This choice is not important with regard to speech recognition, as a de-

coder is only able to hypothesize words that exist in its language model.

Closed-vocabulary language models can be compared as long as the vo-

cabulary is the same, because then every model excludes the same words

from the perplexity computation. However, the question of how to handle

out-of-vocabulary (OOV) words became essential in Publications II and

III, in the context of text filtering. The problem was that perplexity was

used to evaluate different text segments against the same language model,

instead of different language models against the same text.

A closed-vocabulary language model ignores the OOV words, which are

the words that occur with low probability. A text segment that contains

many OOV words gets a low perplexity. If a filtering method selects low-

perplexity text segments, it actually ends up selecting segments with many

low-probability words.

The problem with an open vocabulary is that determining the probability

of the <unk> token is very difficult. A common approach is to replace all

OOV words in the training data with <unk> before training. This obviously

means that all the words from the training data cannot be included in the

model. The vocabulary is normally constructed by excluding words that

occur only a few times. The probability of <unk> is actually the probability

49

Statistical Language Models

of the set of excluded words, so it depends on how many words are excluded

from the vocabulary. There is nothing to say that this results in a good

probability estimate for a single word.

In the conversational Finnish data that was collected for this thesis, the

vocabulary is so large, that most vocabulary words occur only once. In

Publications II and III, we noticed that excluding the words that occur only

once from the vocabulary would already result in a too high estimate for

the <unk> probability. The solution was to use subword models, introduced

in Section 3.4. The choice of subword units is not as crucial for filtering as

it is for speech recognition. In these publications, words were segmented

using the Morfessor Baseline algorithm.

3.7 Variable-Order and Pruned N-gram Models

The number of possible n-grams grows exponentially with the model order.

Of course, all the possible n-grams do not exist in the training data. With

more training data there will be more n-grams that can be used to estimate

the model. Some method is usually applied to prune out the least relevant

n-grams, in order to reduce the model size. A simple but effective method

is to exclude those n-grams that appear only very few times in the training

data. Often the minimum n-gram counts are set higher for higher-order

n-grams. For example, in most publications in this thesis, we used a

minimum count of 2 for 4-grams.

Another strategy is to remove an n-gram from the model, if the difference

to backing off to the lower-order probability estimate is small enough. Since

the back-off weights have to be recomputed after pruning, this approach

can be improved by comparing the pruned model p′ to the original model

p using relative entropy, also known as Kullback–Leibler divergence [88].

The conditional relative entropy of two conditional probability distributions,

p(w | hn−1) and p′(w | hn−1), is defined

DKL(p ‖ p′) =
∑

hn−1,w

p(hn−1, w) log
p(w | hn−1)
p′(w | hn−1)

. (3.21)

Minimizing the relative entropy can also be seen as minimizing the

increase of the perplexity of the model [88]. The perplexity of a model

is defined as the exponent of entropy. While the empirical perplexity in

Equation 3.20 was used to evaluate a model on the empirical distribution

of text, the perplexity of a model can be seen as evaluating the model on

50

Statistical Language Models

the original model distribution:

PP (p) = exp(H(p)) = exp
(
−

∑
hn−1,w

p(hn−1, w) log p(w | hn−1)
)
, (3.22)

where the definition of entropy H(p) is for a conditional probability dis-

tribution p(w | hn−1) and the sum is over the n-grams of the model. In

Publication II, in the text filtering experiments in Publication III, and

in Publication IV, n-grams whose removal caused only a small relative

increase in the model perplexity were pruned out. The threshold was in

the order of 10−9.

Typically word n-gram models that are used in speech recognition are

not estimated on longer than 4-grams, because of diminished benefits and

more computation required by using higher-order models. Significantly

longer contexts are sometimes beneficial when modeling language using

subword units. The smaller the subword units, the longer context is needed

to model text well. At one extreme the subword vocabulary includes just

the letters of the alphabet. The vocabulary consist of a few dozen letters,

and the length of a sentence is the number of letters in the sentence. At

the other extreme, the vocabulary contains whole words. The vocabulary

can consist of millions of words, and the length of a sentence is the number

of words in the sentence.

Even if the subword vocabulary is smaller than a word vocabulary, build-

ing a model of very high order first and then pruning it may be too costly.

An alternative is to grow the model incrementally, only adding the most

relevant n-grams. The Kneser–Ney growing algorithm starts from a uni-

gram model and increases the model order by one until no new n-grams

are added [85]. On each iteration, the algorithm processes the longest

n-grams in the model. Taking one of those n-grams from the model, wi,

it finds all the extensions G = {wi, wj} from the training data. The set of

n-grams G is added to the model, if adding it reduces the cost.

The cost function is based on the MDL principle [77], sharing some simi-

larity with the Morfessor cost. It consists of two parts, the log probability

of the training data and the model size. Similar to Morfessor, a hyperpa-

rameter is added to control the relative importance of these two objectives.

However, Kneser–Ney growing uses it to weight the model size term, while

the Morfessor α by convention weights the log probability of the training

data (see Equation 3.13). Kneser–Ney growing was used in Publications

III and V.

51

Statistical Language Models

3.8 Forming Word Classes

Finding good word classes is not easy. The approaches can be divided into

two categories: rule-based methods that use prior knowledge of which

words have a similar function in the language, and unsupervised methods

that are based on co-occurrence of words in the training data.

Prior knowledge of the language may include for example part-of-speech

information. It is always language specific and often difficult to obtain. The

intuition is that when we group together words that are used in similar

contexts, the probability estimate for a class in a given context represents

well the probability of the individual words in that class. Unfortunately

the relationship between words in any natural language is so complex that

linguistic information does not necessarily correspond to a classification

that is good from the perspective of modeling a word sequence using

Equation 3.10. The suitability of different word clustering methods for

language modeling is compared in Publication V.

3.8.1 Unsupervised Methods

Several unsupervised methods have been used for clustering words into

some meaningful classes. The algorithms that have been used for class-

based language models are mostly based on optimizing the perplexity of

a class bigram model. This is equivalent to using the following objective

function, which is the log probability of the training data:

L =
∑
t

[logP (c(wt) | c(wt−1)) + logP (wt | c(wt))] (3.23)

Maximizing the class bigram likelihood in Equation 3.23 is a very hard

problem because of the number of different ways in which NC classes can

be formed from NV words. In practice the clustering algorithms that try to

maximize this objective are greedy—they use some heuristic to guide the

search in such a way that it may stop in a local optimum.

The exchange algorithm [49] starts with some initial clustering of NC

classes. The initial clustering can be based for example on word frequencies

in the training data. The algorithm progresses by moving one word at

a time to another class. It is evaluated how much the objective would

change if the word was moved to each of the NC classes. If any move would

improve the objective, the word is moved to the class that would produce

the biggest improvement.

52

Statistical Language Models

Variations of this algorithm have been implemented in the mkcls tool [70].

An efficient implementation of the algorithm maintains counts of class–

class, word–class, class–words, and word–word bigrams, which makes

it possible to evaluate the change in the objective for a single class in

O(NC) time [57]. Thus one word can be processed in O(N2
C) time. The

algorithm can be continued until there are no more moves that would

improve the objective. However, usually the algorithm converges much

sooner to such a state that it can be stopped without sacrificing much of

the quality of the resulting classes. The algorithm can be parallelized by

evaluating the change in objective for different classes in different threads.5

In Publication IV, word classes were created using mkcls. In Publication

V, a faster multi-threaded exchange implementation was used.6

The Brown clustering method [11] uses the same objective, but a different

search strategy. It starts with each word in a distinct class and merges

classes until there are only NC classes. The algorithm needs to evaluate

the change in objective after merging a pair of classes. By caching some

statistics, the evaluation can be done in a time that is proportional to

the number of classes that appear together with the merged class in

the training data. Assuming that this is a very small number, a single

evaluation can be thought of running in constant time. This can still be

too slow if the algorithm starts with NV classes—evaluating all pairs of

classes would take O(N2
V) time. The authors propose an approximation to

further reduce the computational complexity: The algorithm starts with

NC most frequent words in distinct classes and at each iteration adds a

new word to one of those classes. Using this strategy, the running time of

one iteration is O(N2
C). The algorithm stops after NV −NC iterations.

Neural networks provide a different kind of method for clustering words.

Section 4.1 shows how the projection layer of a neural network language

model maps words to a continuous vector space. The word embeddings that

an NNLM learns tend to capture syntactic and semantic regularities of

the language [64]. Word classes can be formed by clustering these vectors

using traditional clustering techniques.

Word embeddings can be created using very simple network architectures,

such as the continuous bag-of-words (CBOW) and continuous skip-gram

5Parallelizing the computation of the objective for example on a GPU is difficult,
because the word–class and class–word bigram statistics are sparse and cannot
be saved in a regular matrix.
6The implementation of the exchange algorithm, developed at Aalto University, is
available on GitHub: https://github.com/aalto-speech/exchange

53

Statistical Language Models

(CSG) [60]. These architectures do not contain a nonlinear hidden layer.

The CBOW model predicts the current word from the average of the em-

beddings of the context words. The CSG model predicts the context words

(irrespective of order) given the current word. The context includes words

immediately before and after the current word.

The computational cost of training the CBOW and CSG models is dom-

inated by the output layer. The training can be made very fast using

softmax approximations that are summarized in Section 4.2. After train-

ing the model, the word embeddings are clustered for example using the

k-means algorithm [55]. The cost of one iteration of k-means has linear

dependency on the number of classes and the dimensionality of the em-

beddings, but the number of iterations required for convergence depends

on the data. Publication V shows that this method does not work well for

class n-gram models. The method does not explicitly optimize language

model performance, and clustering high-dimensional data is known to be

difficult.

3.8.2 Rules for Clustering Conversational Finnish Words

It would seem plausible that linguistic knowledge on the similarity of

words could be used to estimate models that generalize better to unseen

n-grams. As discussed in Section 2.5.2, the same Finnish word can be

written in various different ways, depending on the degree to which the

conversation is colloquial. In order to accurately predict words using

a class-based model, we would like to have the words in each class to

be similar in the sense that they could be used interchangeably. While

the probability of a word may depend on the degree to which the text is

colloquial, it is reasonable to assume that the model should give a similar

probability regardless of which form of the same word is used.

By observing how different phonological processes alter the letters in a

word, it is possible to create rules that recognize different variants of the

same word. Publication V presented a rule-based method for clustering

colloquial variants of Finnish words. First two vocabularies are compiled,

one from a standard Finnish and one from a colloquial Finnish corpus.

The algorithm starts by assigning each word to a separate class. Then

it compares every standard Finnish word to every colloquial word. If

the colloquial word appears to be a variant of the standard Finnish word

according to the rules that describe typical letter changes, those two classes

are merged.

54

Statistical Language Models

Because the reduced word forms may be ambiguous, eventually multiple

different standard Finnish words may get into the same class, but this

is rare. Typically only a handful of word forms will be in each class. In

Publication V this rule-based method was combined with the exchange

algorithm to create larger classes. This clustering method gave the best

word error rate, but the difference to other methods was very small.

3.9 Details on the N-gram Models Used in This Thesis

In all the publications in this thesis, the first speech recognition pass was

performed with an n-gram language model. The models were trained using

the SRILM toolkit [89]. Except for the class-based models, the modified

Kneser–Ney smoothing was used. Modified Kneser–Ney computes the

discount parameters using statistics on how many n-grams occur one, two,

three, and four times. The estimation fails if any of these count-of-counts

are zero. Class-based n-gram models were used in Publications IV and V.

When training a language model on word classes, those count-of-counts are

often zero. For example, there are very rarely class unigrams that occur

only once. Thus the class-based models were estimated using interpolation

of the maximum likelihood probabilities, as in Equation 3.6.

As there was not a single high-quality corpus of conversational Finnish,

the n-gram models were combined from different sources of varying size

and quality. A single model with interpolated probabilities was created,

optimizing the interpolation weights on development data using the EM

algorithm. The number of submodels used in the interpolation varied

between publications.

In Publication II five submodels were trained from different web data

sets. In Publication III, the conversational Finnish models were interpo-

lated from six web data sets and conversational Estonian from four. In

Publication IV, the Finnish models were interpolated from six web data

sets and DSPCON corpus. The English models were interpolated from

ICSI and Fisher corpora and one web data set. Unsurprisingly, an improve-

ment was seen over pooling all the data together. However, in Publication

IV, because of lack of data, we had no separate evaluation set for Finnish

after optimizing the interpolation weights.

While writing Publication V, we noticed that optimizing the interpolating

weights for seven submodels tends to overlearn the development data.

Better evaluation results were achieved by using just two submodels for

55

Statistical Language Models

Finnish: DSPCON corpus and web data. For Estonian, three submodels

were used, separating a large set of broadcast transcripts from a smaller

set of spontaneous conversations.

The class-based models in the publications were based on Equation 3.10.

In Publication IV, Finnish speech recognition results from a class-based

4-gram model were given for reference. It was on the same level with a

word model trained on a 200,000-word vocabulary, and interpolating these

two models gave a small improvement. Different methods for clustering

words into classes and different class vocabulary sizes were compared

in Publication V. We found, surprisingly, that n-gram models trained on

word classes consistently outperformed full-vocabulary word models, even

without interpolation.

There are several differences between the class models in Publications IV

and V. In Publication IV, mkcls implementation of the exchange clustering

algorithm and Aalto ASR decoder were used. In Publication V, an exchange

implementation developed at Aalto University was used, and Kaldi decoder

with DNN acoustic models that provided a huge leap in the baseline

performance. Perhaps the most important difference is, however, that the

vocabulary used to create the word lattices was limited to 200,000 words.

It seems that class-based modeling is beneficial especially when using a

very large vocabulary.

First results from subword models on conversational Finnish ASR were

given in Publication II. The subword vocabularies were created using the

Morfessor Baseline algorithm and their sizes were in the order of 100,000

morphs. The results were clearly worse than results from a slightly smaller

word vocabulary.

In several experiments in Publication III, Morfessor Baseline was used

to create segmentations from several Finnish and Estonian data sets. The

data was from broadcast news, books, and other sources that do not contain

much conversational language, and comparison to word models was not

included in these experiments.

In Publication V, Morfessor Baseline models were used again on the

conversational Finnish task. The hyperparameter α was used to control

the size of the resulting morph vocabulary. The vocabulary turned out

very large, more than 400,000 words, with α = 1.0, which worked well in

class-based subword models, but otherwise lower α-values worked better.

The subword n-gram models were variable-order models trained using the

VariKN toolkit. The variable-order subword models still did not outperform

56

Statistical Language Models

word models, but neural network subword models did. Neural network

language models will be presented in the next chapter.

The usability of subword models for speech recognition may be limited in

some languages by the fact that a pronunciation cannot be defined for units

shorter than a word. Commonly an HMM decoder needs a pronunciation

for all the lexical items. In Publication III, a different kind of decoder was

constructed that is based on subword units, but limits the search space to

words that are defined in a pronunciation dictionary. In this experiment,

Morfessor was used to create subwords from a small broadcast news data

set, but from a larger set of the same data, subwords were created to

maximize the likelihood of the multigram model using the G1G search.

In Publication III, the multigram model was also used in the web data

selection experiments. Subword probabilities were estimated using the EM

algorithm and the Viterbi algorithm was used to segment the downloaded

conversations given those probabilities. The subword model included

individual letters, meaning that any sentence could be segmented.

Kneser–Ney growing was used to build the subword n-gram models in

Publications III and V. The resulting models were 6-gram, 8-gram, and

12-gram models.

57

Statistical Language Models

58

4. Neural Network Language Models

4.1 Artificial Neural Networks

Artificial neural networks have been successfully applied to various ma-

chine learning applications from stock market prediction to self-driving

cars. Today all the state-of-the-art speech recognizers also used neural net-

works for modeling the acoustics and the language. A neural network is a

structure of nested mathematical operations. As a whole, the network can

approximate complex nonlinear functions, for example probability distribu-

tions. Each node of the network, called a neuron or a unit, performs some

operation on its inputs. The neurons are organized in layers. The inputs of

a neuron are either data samples or outputs of other neurons. Typically a

neuron uses the outputs of the neurons in the layer immediately before it

to compute its own output, but different network topologies can be defined.

Figure 4.1 shows a network that consists of three fully-connected layers.

By convention, the inputs (blue circles) are drawn at the bottom of the

graph. Next are two hidden hidden layers. Each neuron computes its

output using its inputs and a set of parameter variables. It is convenient

to represent the output of a layer, s(l), and the input of the network, x,

as vectors. The output of a hidden layer is called the hidden state of that

layer. The network can be seen as a chain of vector-valued layer functions:

y = f (3)(f (2)(f (1)(x))).

A basic feedforward layer function is an affine transformation followed by

a nonlinear activation function: f(x) = φ(Wx+ b) The activation function

φ(z) is typically the hyperbolic tangent or the rectifier (max(0, x)) applied

elementwise. The input of the activation function, a = Wx+ b, is called

the preactivation vector or the net input of the layer. The weight matrix W

and the bias vector b are parameters of the layer that will be learned from

59

Neural Network Language Models

s(0)

s(1)

s(2)

y0 y1

x0 x1 x2

s(0) = φ(0)(a(0))

a(0) = W (0)x+ b(0)

s(1) = φ(1)(a(1))

a(1) = W (1)s(0) + b(1)

s(2) = φ(2)(a(2))

a(2) = W (2)s(1) + b(2)

Figure 4.1. An artificial neural network with two hidden layers and an output layer. The
output of the final layer (yi) can approximate probability distributions that
depend on a large number of inputs (xi).

the training data.

In a classification task, the activation of the final layer is usually softmax:

yi =
exp(ai)∑
j exp(aj)

, (4.1)

where ai is the ith preactivation of the softmax layer. The outputs, yi,

estimate the probability of each class. This is equivalent to Equation 3.9,

meaning that softmax is actually a log-linear model. However, the features

in maximum entropy models have been fixed when designing the model,

whereas the first layer of a neural network language model automatically

learns to represent the input words as continuous-valued feature vectors.

In language modeling, a neural network can be used to predict a word

occurring in given context. Perhaps the most straightforward approach is

a feedforward network that is essentially an n-gram model—the output

is the probability of word wt and the input is the n − 1 previous words.

The interesting novelty is how words are used as input. Bengio et al. [6]

reasoned that words should be mapped to continuous vectors in order for

the neural network to learn semantic similarities between words that in

the vocabulary are represented by discrete numbers. This mapping is done

by the projection layer in Figure 4.2.

The projection matrix is a parameter of the network, and will be learned

60

Neural Network Language Models

p(wt | wt−1, wt−2, wt−3)

softmax

tanh

projection projection projection

wt−3 wt−2 wt−1

Figure 4.2. A feedforward neural network language model. The projection layer maps
words into continuous vectors. There is just one projection matrix that is
applied to all the inputs.

during training just like the weights of the other layers. The projection

can be implemented by selecting the row from the matrix that corresponds

to the index of the word in the vocabulary. Another way to look at it is as a

multiplication between the projection matrix and a vector that contains

one at the location specified by the word index and zeros elsewhere (1-of-N

encoding). All the inputs are projected using the same matrix.

The projection layer maps words into vectors, sometimes called word

embeddings or word features. The dimensionality of the projection is

typically between one hundred and a few hundred. Feedforward networks

have a fixed context length that is typically below 10. As the number of

inputs grows, so does the number of network parameters. For example, if

a 5-gram feedforward NNLM (4 input words) uses 100-dimensional word

embeddings, the next layer has 400 inputs.

If the network contains cycles, it is called a recurrent neural network

(RNN). Typically the cycles connect neurons within the same layer. One

way to think of recurrent connections is that the hidden state of a layer

is transferred to the next time step. The next time step computes its own

output from its own input, but all time steps share the same network

parameters. It was shown above, how a feedforward network can be used

to model a word sequence (or generally a time series) by predicting the next

word given a fixed number of previous words. RNNs can predict the next

word given the previous word and a state that is retained between time

steps. The state is designed to capture the dynamics in the sequence up to

61

Neural Network Language Models

p(w1 | w0) p(w2 | w1, w0) p(w3 | w2, w1, w0) p(w4 | w3, . . . , w0)

softmax softmax softmax softmax

recurrent recurrent recurrent recurrent

projection projection projection projection

w0 w1 w2 w3

c0 c1 c2 c3

s0 s1 s2 s3

Figure 4.3. An RNN language model. The recurrent network has been unrolled four time
steps. The output of the recurrent layer, st is passed to the next time step.
LSTM adds the cell state ct, which is designed to convey information over
extended time intervals. The same network parameters are used at every
time step.

the current time step. Consecutive words are fed as input at consecutive

time steps, and each time step updates the state.

RNNs can be implemented by unrolling the recurrency as shown in

Figure 4.3. Each time step uses a copy of the same network, but different

input. Each time step also outputs the probabilities for the next time step.

The difference to a feedforward network is that the recurrent layer output

(the hidden state) at each time step is used also as its input at the next

time step.

4.2 Suitability of Neural Networks for Language Modeling

Language modeling is a form of sequence prediction. The unique feature

that language models have is that their input and output space is discrete

and very large, consisting of hundreds of thousands of words. This is a

classification problem with a large number of separate classes, but the

classes are not unrelated. A neural network can learn a mapping from

words to vectors of a continuous space, where the vector dimensions bear

some meaning.

As we noticed in Publications IV and V, and as various other authors

have noticed before [61, 2, 14] neural network language models can clearly

exceed the accuracy of n-gram models in terms of prediction accuracy. Al-

62

Neural Network Language Models

though in principle the RNN state can capture long-term dependencies,

when the duration of the dependencies increases, learning the dependen-

cies becomes difficult in practice [8]. Learning long-term dependencies

with RNNs is discussed in Section 4.4.

The most important disadvantage of neural networks compared to n-

gram models is the computational complexity. Training an NNLM can

take weeks, and in fact the performance of an NNLM is to a large extent

limited by the time that we are willing to spend on training the model. Also

the inference is slower, which makes them unsuitable for one-pass speech

recognition. The larger the vocabulary is, the more difficult it becomes to

implement a language model with neural networks. This is because the

softmax normalization in Equation 4.1 takes time linear in vocabulary

size.

Therefore it should not be surprising that a lot of the research on NNLMs

has concentrated on reducing the computational complexity of the output

layer. These approaches can be divided into four categories:

• Smaller vocabulary. The neural network is trained on a different

vocabulary, either word classes, subwords, or a shortlist of the most

frequent words.

• Approximate softmax. The softmax is approximated by performing

the normalization only on a random subset of the vocabulary on each

training item. This speeds up training, but usually normal softmax is

taken to correctly normalize the model during inference.

• Hierarchical model. The output layer is structured into a hierarchy

of multiple softmax functions, each taken over a small set of classes. This

speeds up both training and inference.

• Unnormalized model. The training objective is altered to guide the

training toward a model that is approximately normalized. If exact

probabilities are not needed, softmax is not necessary and inference is

fast.

In the neural network language modeling experiments in this thesis, an

n-gram language model was used to create a word lattice in the first speech

recognition pass, and the lattice was rescored using an NNLM in a second

63

Neural Network Language Models

pass. Rescoring a lattice does not require as fast evaluation of neural

network probabilities, so unnormalized models were not used. Training

time is still a severe issue especially in languages such as Finnish that

have a very large vocabulary.

By choosing a different vocabulary, both training and inference speed

can be increased dramatically. Usually this means an approximation of a

full-vocabulary model, which can decrease the model performance. The

traditional approach is to use the neural network to predict just a small

subset of the vocabulary, called a shortlist, and use a back-off n-gram model

to predict the rest of the vocabulary. A shortlist is convenient to implement

within a feedforward NNLM, which is a particular kind of an n-gram model

itself.

Class-based NNLMs were used in Publications IV and V. Publication V

also compared subword and shortlist NNLMs, softmax approximations,

and hierarchical softmax. The softmax approximations are discussed in

Section 4.5.

4.3 Training Neural Networks

So far we have discussed the different network architectures, but disre-

garded the most essential challenge in using artificial neural networks—

how to learn such parameter values that the network models our data

well. The learning algorithms that have been found to work best with

neural networks are based on gradient descent, iterating computation of

the gradient of the cost function with respect to the network parameters,

and adjusting the parameters accordingly.

The cost function C(θ,w) measures the difference between the actual and

desired output of the network. The training data w provides the inputs

and target outputs of the network, the word following the input words

taken as the target output. Different ways to define the cost function in

NNLM training are discussed in Section 4.5. Common to those definitions

is that the cost, and consequently its gradient, can be written as a sum of

subgradients taken over individual training examples:

C(θ,w) =
∑
wt

C(θ, wt) (4.2)

∇θC(θ,w) =
∑
wt

∇θC(θ, wt), (4.3)

64

Neural Network Language Models

The input of the network is needed for computing the cost, but has been

omitted from the right side of Equations 4.2 and 4.3 for brevity. In a

feedforward network the input would be a few words that precede the

target word. In a recurrent network the input is the words from the

beginning of the sentence up to the one before the target word. An NNLM

can be designed to take dependencies between sentences into account by

using a context that spans multiple sentences.

4.3.1 Stochastic Gradient Descent

The parameters of a neural network have to be optimized using a numerical

method, usually stochastic gradient descent (SGD) or some variation of it.

The objective is to minimize the value of the cost function C on the training

data w. Gradient descent tries to achieve this by iteratively moving the

model parameters θ in the direction where the cost decreases fastest. That

direction is given by the negative gradient of the cost with respect to the

parameters:

θi+1 = θi − η∇θC(θ,w) (4.4)

The size of the step taken in the direction of the negative gradient can

be adjusted by selecting a smaller or larger learning rate η. Selecting a

good value is crucial for the convergence of the optimization. The smaller

the value, the slower the training will be. On the other hand, a too large

value will cause training to oscillate without ever converging. A common

approach is to start with as large learning rate as possible and then

decrease it when the model stops improving.

Computing the entire gradient ∇θC(θ,w) would take a lot of time. Ex-

pressing the gradient as the sum of the subgradients at individual training

examples, as in Equation 4.3, allows a stochastic version of gradient de-

scent to be used. Instead of computing the whole gradient before updating

the network parameters, the gradient is computed on a small subset of the

training data called a mini-batch. The network parameters are updated

after processing each mini-batch. Processing the entire training data is

called an epoch. The order of the mini-batches is shuffled in the beginning

of each epoch.

Updating the parameters after each mini-batch allows a more fine-

grained tuning of the parameters and increases the performance of the

final model. The batch size is an important training hyperparameter. A

65

Neural Network Language Models

too small batch size can make training unstable, causing the gradients to

explode to infinity. The batch size also defines the amount of data that is

processed at any instance. A too large batch size is problematic with regard

to the memory consumption, and a too small batch size can be inefficient

because there is not enough data that can be processed in parallel.

Many variations of SGD try to improve the speed of convergence. Nes-

terov’s Accelerated Gradient avoids oscillation of the cost by updating the

parameters according to a momentum vector that is slowly moved in the

direction of the gradient [69]. Adagrad [23], Adadelta [97], Adam [46], and

RMSProp adapt the magnitude of the subgradients (or equivalently, the

learning rate) per parameter. The idea is to perform larger updates for

those parameters that have been updated infrequently in the past. This

is realized by keeping track of statistics of the past gradients for each

parameter. The adaptive gradient methods do not require careful tuning

of the learning rate hyperparameter. We found Adagrad to work especially

well in different tasks and used it in Publications IV and V.

4.3.2 Backpropagation Algorithm

Computing the gradient involves a forward and a backward pass through

the neural network. In a forward pass the network is fed with the input,

and the cost function is computed as the output of the network. In a

backward pass, the gradient of the cost function is computed with respect

to all the parameters of the network iteratively for each layer, using the

chain rule of differentiation. The procedure is called backpropagation.

The backpropagation starts by computing the gradient of the final layer

with respect to the preactivations. For simplicity, let us now consider a

network with a single output, and the mean squared error (MSE) cost

function. MSE cost compares the network output yt at time step t to the

desired output y∗t :

C(θ, wt) =
1

2
(yt − y∗t)

2 (4.5)

The gradient of the cost at time t with respect to all network parameters

θ can be derived by recursive application of the chain rule. First the

derivative of the cost with respect to the network output is computed. In

case of the MSE cost, it is

∂C
∂yt

= yt − y∗t . (4.6)

66

Neural Network Language Models

Next the gradient of the cost with respect to the final layer preactivations

a(out) is expressed using the derivative in Equation 4.6 and the gradient of

the network output. This vector quantity, Δ(out), is called the error in the

output layer:

Δ(out) = ∇a(out)C =
∂C
∂yt

∇a(out)yt = (yt − y∗t)φ
(out)′(a(out)) (4.7)

In Equation 4.7 we have assumed that the output layer function is

of the form φ(out)(a(out)). φ(out) is a function whose derivative we know

that is applied elementwise to the preactivations a(out). For example, we

know that the derivative of tanh activation is 1 − tanh2, which is also

taken elementwise. Because the values of a(out) and yt are known through

forward propagation, we can compute the value of Δ(out) at the current

input.

The error Δ(l) in layer l can be used to find the gradient with respect to

the parameters of that layer. For example, assuming the input of the layer,

s(l−1), is transformed by the weight matrix W (l), we can get the gradient

of the cost with respect to the weights (a matrix of the partial derivatives

with respect to the elements of W (l)) using

[
∂C
∂wij

]
=

[
∂C
∂ai

]
�
[
∂ai
∂wij

]
= Δ(l)

[
s(l−1)

]T
, (4.8)

where � is the Hadamard or elementwise product. For brevity, the layer

index l is left out from the weights and preactivations, i.e. W (l) = [wij] and

a(l) = [ai]. Again, the output of the previous layer, s(l−1), is obtained by

forward propagation.

The error in the output layer is also propagated down the network, in

order to obtain the gradient with respect to the parameters of the previous

layers. The gradient of the cost with respect to the previous layer output

s(l−1) is expressed using Δ(l):

∇s(l−1)C =

[
∂aj
∂xi

]
∇a(l)C =

[
∂aj
∂xi

]
Δ(l) (4.9)

The matrix in Equation 4.9 is the transpose of the Jacobian of the layer l

preactivations. The preactivation vector is just an affine transformation of

the input vector, meaning that the Jacobian can be derived easily. Without

loss of generality, we will ignore the bias, so that the Jacobian is simply

the weight matrix. The gradient can then be written
[
W (l)

]T
Δ(l).

This procedure would be continued by multiplying the gradient ∇s(l−1)C
by the Jacobian of s(l−1) to obtain the error in the previous layer. In the

67

Neural Network Language Models

case that the layer functions are just a linear transformation followed by

an elementwise nonlinearity φ(a), we get a simple equation for the error

in layer l − 1 given the error in layer l:

Δ(l−1) =
[
W (l)

]T
Δ(l) � φ(l−1)′(a(l−1)) (4.10)

The differentiation can be automated, requiring the user to specify only

the forward computation as a graph of mathematical operations, each of

which has a known derivative. The gradient with respect to any parameters

can then be computed by performing the Jacobian-gradient multiplications

for every operation in the graph. For details, see the book by Goodfellow et

al. [28].

Recurrent networks are used to model time sequences. At each time step,

a recurrent layer combines two inputs, the output of the previous layer

and the hidden state of the previous time step. The output of the layer

is written both to the next time step and the next layer. A simple way to

extend backpropagation to recurrent networks is called backpropagation

through time (BPTT).

BPTT is essentially backpropagation in a recurrent network that is

unrolled in time as in Figure 4.3. Conceptually, the network is copied

as many times as there are time steps, and each time step has its own

input and output, but the network parameters are shared between all time

steps. In practice, language modeling data sets are too large to perform

backpropagation on a network that is unrolled for the whole length of the

training data. Instead, mini-batches that contain only a small subset of

the data points are processed independently.

Applying backpropagation in an unrolled recurrent network requires just

well-known generalization of the chain rule to multiple inputs where the

output of the layer branches. This is taken care by modern frameworks

such as Caffe, Theano, and TensorFlow that perform automatic differentia-

tion. Because the parameters are shared between the time steps, the same

parameter tensors are used as input for all time steps. This will lead to

the parameter updates accumulating from all time steps.

4.4 Learning Deep Representations

Deep neural networks (DNNs) can learn a hierarchical representation that

models the data efficiently and generalizes to unseen data. For example, it

has been shown that DNNs trained to classify images learn to recognize

68

Neural Network Language Models

more abstract concepts in the higher layers, using simpler forms that are

recognized by the lower layers [98].

A recurrent neural network is a particular kind of a DNN. An RNN

language model, such as the one in Figure 4.3, learns a structure that

is good at predicting a word using information that is constructed from

the previous words in a hierarchical manner. The first layer creates a

vector representation or embedding of the word. A recurrent layer creates

a hierarchical representation of the context. These can be followed by

subsequent recurrent and feedforward layers.

The information that flows in an NNLM cannot be visualized in the

same way as the activations of an image classifier. However, we can

visualize relationships between word embeddings and observe semantic

relationships in the vector space [64]. In the same way we can think of

the activations of a recurrent layer at the end of a sentence as a sentence

embedding. By visualizing the relationships between sentence embeddings

we can observe that they capture semantic relationships between sentences

[91]. Thus the recurrent state embodies some linguistic information about

previous words and their relationship in the sentence.

While n-gram models typically use no more context than the previous

three words, normally text contains also cues that can help prediction of

words a much longer distance apart. Neural networks learn to represent

these relationships using the backpropagation algorithm, which may be a

limiting factor in how long relationships the network can learn.

Backpropagation essentially computes the effect that adjusting each

parameter has on the cost function. Equation 4.10 describes how errors

are backpropagated to the previous layer. It is important to notice what

happens to the magnitude of the errors in deep networks. The derivative

of typical activation functions such as the hyperbolic tangent and the

sigmoid is between −1 and 1. The weights are also usually initialized to

small values. Thus each layer reduces the magnitude of the errors until

they are too small to be represented by the limited precision of floating

point numbers [39, pp. 19–21]. This problem of vanishing gradients makes

learning long-distance dependencies slow, if at all possible.

It would be possible to select an activation function that outputs larger

values, but that would just introduce another problem of exploding gra-

dients. Currently a popular choice for the activation function, at least in

computer vision, is the rectifier, because its derivative is 0 for negative

input and 1 for positive input. The rectifier reduces the problem because

69

Neural Network Language Models

its gradient does not vanish for large inputs.

There are also several other changes that have been proposed to deep

networks, including RNNs, that make it easier for the networks to convey

information over long distances. It should be noted that even though the

network structure is changed, they address a problem in training networks.

In principle an RNN could convey information over indefinitely long dis-

tances, if the parameters were chosen carefully, but backpropagation fails

to learn such parameters.

Consider the RNN language model in Figure 4.3. At each time step, the

recurrent layer uses two inputs, the hidden state from the previous time

step, and the embedding of the current input word. Based on these it has

to compute the state that it outputs to the next time step. In order to

predict a word in the end of a sentence using information about which

word appeared in the beginning of the sentence, all time steps in between

have to learn to pass on some information in the hidden state that they

read from the previous time step (rather than something they observed

from the current input word). Furthermore, the error signal that controls

this learning gets weaker the longer the distance in time is.

4.4.1 Long Short-Term Memory

To better facilitate information flow, a layer can offer a channel that passes

information on without transforming it through an activation function.

Long short-term memory (LSTM) [40] is a modification of the RNN struc-

ture that passes another state vector to the next time step, in addition to

the hidden state. This cell state allows information to flow unchanged over

long distances, because it is modified only by explicitly removing or adding

information when necessary.

The key to controlling the cell state is gates that multiply a signal by

a value that is most of the time close to either zero or one. The value is

produced by taking the sigmoid of an affine transformation of the input.

These control units are effectively layers themselves that learn to set some

elements of a signal vector to zero. Each has its own set of weights that

are learned during the network training.

LSTM uses gates to control when and how to modify the cell state. There

are actually a number of variations around the same idea. The original

paper used two gates: input gate decides what information is added to

the cell state, and output gate decides what information is written to

the hidden state. It is now standard to include a forget gate that clears

70

Neural Network Language Models

ct−1 ct

s
(l)
t−1 s

(l)
t

s
(l−1)
t

×

0

1

Wf Wi

0

1

W

-1

1

Wo

0

1

×

+

-1

1

×

Figure 4.4. Block diagram of a single time step of an LSTM layer. Useless information is
removed from the cell state input (ct−1) by multiplying it by the forget gate
activation (red line). The input gate activation (green line) selects what new
information is added to the cell state. The output gate activation (blue line)
controls what is written to the hidden state (s(l)t), which is also the output
of the layer. The input is usually a combination of the hidden state of the
previous time step (s(l)t−1) and the output of the previous layer (s(l−1)

t).

useless information from the cell state to avoid the cell state growing in an

unbound fashion [27].

Figure 4.4 depicts the internal structure of an LSTM layer with input,

output, and forget gates. The gates use sigmoid activation, while the

actual information is squashed using hyperbolic tangent. These functions

are actually very similar, but sigmoid values are between 0 and 1, while

hyperbolic tangent is between −1 and 1. All the gates use the same input,

which depends on how the network is defined.

Typically the input to LSTM is a combination of the hidden state of

the previous time step (s(l)t−1) and the output of the previous layer (s(l−1)t).

In case of a language model, the latter is usually the word embeddings

produced by the projection layer. Each gate needs two weight matrices for

the two inputs, W and U , and a bias vector b. (Figure 4.4 shows just one

weight matrix per gate.) For example, the activation of the forget gate at

time step t can be written:

gf (s
(l−1)
t , s

(l)
t−1) = σ(Wfs

(l−1)
t + Ufs

(l)
t−1 + bf), (4.11)

Cell state is multiplied elementwise by the activations of the forget gate,

essentially setting selected cell state units to zero. Then information

selected by the input gate is added to the cell state. A nonlinearity is

applied to the cell state and it is multiplied by the output gate activations

71

Neural Network Language Models

to produce the next hidden state. However, only the forget gate and input

gate affect the next cell state.1

LSTM was used in the recurrent neural network language models in

Publications IV and V.

4.4.2 Highway Networks

LSTM facilitates information flow in recurrent layers through a sequence

of time steps. Highway networks [87] use a similar idea, but try to improve

information flow across layers in a (vertically) deep network. The same idea

can be used in different types of layers. Consider a layer that performs

the function f(s(l−1)). For example, in a feedforward network f would

perform an affine transformation and then apply a nonlinear activation

function. A highway network uses gates to control whether the layer

actually transforms a signal using f , or passes it unchanged to the next

layer. Instead of using two gates to control which value to output, the

authors suggest using a single gate and its negation. Below gt(s) is the

transform gate, which expresses which input signals are transformed:

f(s(l−1)) = tanh(W s(l−1) + b)

gt(s
(l−1)) = σ(Wts

(l−1) + bt)

s(l) = gt(s
(l−1))� f(s(l−1)) + (1− gt(s

(l−1)))� s(l−1)

(4.12)

The gate learns the parameters Wt and bt that select the output between

the layer’s input and its activation. Essentially this means that the net-

work is optimizing its depth. The dimensionality of the activations never

change in a highway network. In Publication V, the NNLM included a

four-layer-deep highway network after an LSTM layer.

4.5 Cost Functions and Softmax Approximations

A cost or loss is a function of the network parameters that the training

tries to minimize. The cost function defines what kind of representation

the neural network tries to learn from the data. It may also have a huge

1The recurrent loop of the cell state was called the constant error carousel (CEC)
in the original publication. It did not include the forget gate, meaning that CEC
units were only changed through addition. In such case the partial derivatives
of the cell state with respect to the cell state at an earlier time step are zero. An
error signal may stay in the CEC indefinitely, but a new signal may be added
through the output gate.

72

Neural Network Language Models

impact on the training and inference speed in a softmax classifier. This

section describes popular cost functions that have been used in neural

network language models, and approximations for improving the speed of

the softmax normalization.

4.5.1 Cross-Entropy Cost

The cost function that is most widely used in classification tasks is cross-

entropy. In such a setting, the final layer uses the softmax activation

function (Equation 4.1) to produce a valid probability distribution. In case

of a language model, there are as many outputs as there are words in the

vocabulary. We would like the output corresponding to the target word to

be as close to one as possible, and all the other outputs to be as close to

zero as possible. In other words, the desired output distribution at time

step t is

y∗i = δiwt , (4.13)

where δ is the Kronecker delta function and wt is the vocabulary index of

the target word.

Cross entropy of two probability distributions measures how similar the

distributions are. The cost function is supposed to measure how well the

actual output distribution {yi} matches the desired distribution, and is

defined as

H({y∗}, {y}) = −
∑
i

y∗i log yi = − log ywt . (4.14)

The summation in Equation 4.14 reduces to the negative log probability

of the target word, as all the other terms will be zero. The cost of a word

sequence will be the sum of the negative log probabilities of the words.

Using this cost function is also equal to optimizing the cross entropy of

the training data w = w1 . . . wt, which is obvious when the probability of a

word sequence (Equation 3.2) is substituted into the equation for empirical

cross entropy (Equation 3.19):

H(w, p) = − 1

T
log p(w) = − 1

T

∑
log p(wt | w1 . . . wt−1) (4.15)

To see how this directly relates to improving perplexity, recall from Section

3.6 that the perplexity of a word sequence is defined as the exponent of

cross-entropy.

73

Neural Network Language Models

Despite its simplicity, the cross-entropy cost in Equation 4.14 is use-

ful, because the softmax normalization in Equation 4.1 effectively causes

the target preactivation awt to contribute negatively to the cost, and all

preactivations to contribute positively to the cost:

C(θ, wt) = − log ywt = − log
exp(awt)∑
j exp(aj)

= −awt + log
∑
j

exp(aj) (4.16)

Computing a single normalized output requires computing the exponents

of all the N preactivations of the output layer, N being the size of the

vocabulary.

Gradient descent moves the parameters to the direction of the negative

gradient. This can be seen as a combination of positive reinforcement for

the target word preactivation awt , and negative reinforcement for all pre-

activations aj . The negative reinforcements are weighted by the softmax

outputs, yj from Equation 4.1 [7]:

−∇θC(θ, wt) = ∇θawt −
1∑

j exp(aj)

∑
j

exp(aj)∇θaj

= ∇θawt −
∑
j

yj∇θaj

(4.17)

All N preactivations have to be backpropagated for computing the gradi-

ents.

4.5.2 Importance Sampling

Complexity of the gradient computation at the output layer is proportional

to the size of the vocabulary, which can be large. In shallow networks this

can be a significant proportion of the total training cost. One would think

that a good enough approximation could be obtained without computing

the network output for every word. This is exactly the idea behind several

sampling-based training methods. They are particularly attractive with

large vocabularies, since their computational cost depends on the number

of sampled words, not on the vocabulary size. They are usually only used

to speed up training, and full softmax is taken during inference.

The summation in Equation 4.17 can be seen as the expectation of the

gradient of the preactivations {aw} under the probability distribution of

the model p(w) = yw. Importance sampling [7] is a Monte Carlo method

that approximates that expectation by taking it over a random subset of

the vocabulary. The difficulty with this method is that in order for the

74

Neural Network Language Models

approximation to be as accurate as possible, the words for the summation

should be sampled from a distribution that is similar to the output dis-

tribution of the model. An estimator is also needed for yw of the sampled

words that does not require computing all the outputs.

4.5.3 Noise-Contrastive Estimation

Noise-contrastive estimation (NCE) [33] turns the problem from separat-

ing the correct class from the other classes into the binary classification

problem of separating the correct class from noise. This quite popular

method can greatly improve training speed on shallow NNLMs, as the

computational cost of training them is dominated by the output layer [14].

For each word wt in training data, a noise word wn
t is sampled from a

known distribution pn(w), e.g. the uniform distribution. When consider-

ing the union of training and noise words, the combined distribution is

pc(w) = 1
2 p

d(w) + 1
2 p

n(w). The data distribution pd(w) also depends on

the context w0 . . . wt−1, as may the noise distribution pn(w), but for brevity

the distributions are not indexed with the time step t in the following

equations. The true data distribution is unknown, so the output of the

model is used instead:

pd(w) = yw =
exp(aw)∑
j exp(aj)

=
exp(aw)

Zt
(4.18)

Because we want to avoid computation of the sum in the denominator,

NCE treats the normalization term Zt as a model parameter that is learned

along with the network weights.2 As it seems, this approach is not as easy

to implement in RNNs, since Zt depends on the context. However, it turns

out that fixing Zt = 1 does not harm the performance of the resulting model,

because the network automatically learns to adjust to the constraint [65].

Let us consider the probability of a sample that comes from the combined

distribution pc(w) being a training or noise word. This is indicated by the

auxiliary label C = 1 for training words and C = 0 for noise words.

2It is not possible to treat the normalization constant as a network parameter in
normal softmax output, because the cost in Equation 4.16 can be made arbitrarily
low by making the denominator go toward zero.

75

Neural Network Language Models

pc(C = 1 | w) = pc(C = 1) pc(w | C = 1)

pc(w)

=
pd(w)

pd(w) + pn(w)

(4.19)

pc(C = 0 | w) = 1− pc(C = 1 | w) (4.20)

These probabilities can be written using the sigmoid function σ(x) =

1/(1 + exp(−x)):

pc(C = 1 | w) = pd(w)

pd(w) + pn(w)

=
1

1 + pn(w)/ pd(w)

=
1

1 + exp(log pn(w)− log pd(w))

= σ(G(w))

(4.21)

pc(C = 0 | w) = 1− σ(G(w)), (4.22)

where G(w) = log pd(w)− log pn(w).

For a binary classification problem, the cross-entropy cost function, de-

fined over all the training words w and noise words wn is:

C(θ,w,wn) = −
∑

w∈{w,wn}

[
Cw log pc(C = 1 | w)

+(1− Cw) log p
c(C = 0 | w)]

(4.23)

This results in the following cost for a single pair of training word wt and

noise word wn
t :

C(θ, wt, w
n
t) = − log σ(G(wt))− log(1− σ(G(wn

t))) (4.24)

The cost function can be simplified using the softplus function ζ(x) =

log(1 + exp(x)):

76

Neural Network Language Models

log σ(x) = log
1

1 + exp(−x)

= − log(1 + exp(−x))

= −ζ(−x)

(4.25)

log(1− σ(x)) = log(1− 1

1 + exp(−x)
)

= log(1− exp(x)

exp(x) + 1
)

= log(
exp(x) + 1− exp(x)

exp(x) + 1
)

= log(1)− log(exp(x) + 1)

= −ζ(x)

(4.26)

C(θ, wt, w
n
t) = ζ(−G(wt)) + ζ(G(wn

t)) (4.27)

4.5.4 Generalization to Larger Noise Sample

The NCE objective function can be made more accurate by sampling k > 1

noise words per training word [34]. The combined distribution of training

and noise words is now

pc(w) =
1

k + 1
pd(w) +

k

k + 1
pn(w), (4.28)

and the posterior probabilities of the data and noise classes become

pc(C = 1 | w) = pc(C = 1) pc(w | C = 1)

pc(w)

=
pd(w)

pd(w) + k pn(w)

=
1

1 + k pn(w)/ pd(w)

= σ(G(w))

(4.29)

pc(C = 0 | w) = 1− pc(C = 1 | w)

=
k pn(w)

pd(w) + k pn(w)

=
1

pd(w)/ (k pn(w)) + 1

= σ(−G(w)),

(4.30)

where G(w) has been redefined G(w) = log pd(w)− log k pn(w).

Compared to Equation 4.16, evaluation of aj for all the vocabulary words

is reduced to k+1 evaluations per training word. In Publication V, the best

77

Neural Network Language Models

Finnish word model was trained using NCE, but generally NCE training

seemed unstable.

4.5.5 BlackOut

Another method that was implemented in Publication V, BlackOut [44], is

similar to NCE but simpler to define. It replaces softmax with a weighted

approximation that normalizes the target word only on k + 1 words, the

target word and the noise words:

qw =
1

pn(w)

p̃(w) =
qw exp(aw)

qw exp(aw) +
∑

j qj exp(aj)
,

(4.31)

where the summation is over the sampled noise words.

The cost discriminates explicitly the target word from the noise words:

C(θ, wt,w
n
t) = − log p̃(wt)−

∑
w′∈wn

t

log(1− p̃(w′)) (4.32)

In our experiments BlackOut was slightly faster, but less stable than

NCE, and we could not get results from this method.

4.5.6 Unnormalized Models

The softmax approximations described in the previous sections speed up

training of neural networks. In some applications inference speed is more

important than training time. For example, there are situations where

transcription of television broadcasts should be done in real time. It is only

a matter of time until NNLMs find their way into real-time applications.

The model does not have to be correctly normalized in order to be use-

ful for speech recognition, as long as it ranks the good sentences above

those that are spoken less likely. Variance regularization uses a training

objective that penalizes models based on how far they are from the nor-

malized model before the normalization [83]. It learns a model that is

approximately normalized, so that during inference the normalization is

not needed. Another approach is to predict the normalization term (Zt in

Equation 4.18) from the network inputs along with the unnormalized word

probabilities [81].

78

Neural Network Language Models

4.5.7 Hierarchical Softmax

A different approach for improving output layer performance is to factor

the softmax function into a hierarchy of two or more levels. Originally the

idea emerged from maximum entropy language modeling [30]. Maximum

entropy models, like softmax, have a log-linear form that suffers from

the computational cost of explicit normalization (see Section 3.2.2). A

hierarchical decomposition of softmax improves both training and inference

speed of NNLMs [67].

Each level of the hierarchy takes softmax over classes of words, narrowing

down the set of words that one class encompasses. If a single softmax layer

had N outputs, in a two-level hierarchy each softmax function would have

only
√
N outputs. The first level would compute probabilities over

√
N

classes, and the second level over
√
N words in the classes.

Usually we are interested only in the probability of a particular word.

Then the computation is reduced dramatically, because we need to compute

only one softmax on each level. Assuming the two-level hierarchy, the first

level computes the probability of the target class and the second level

computes the probability of the target word inside the class. The actual

output probability is the product of these two probabilities. The neural

network inputs and outputs are words, which makes it more accurate than

class-based models that use unigram estimates for probabilities inside a

class.

Hierarchical softmax was used in Publication V for vocabularies as large

as 500,000 words. Training was stable and the model performance seemed

to be close to normal softmax.

4.6 Combining Data Sources

When building a practical speech recognition system, the amount of train-

ing data usually limits the accuracy that can be achieved. Language

modeling data can be collected from many sources, for example newspaper

archives and the Internet. This was the case with conversational Finnish

as well. The models were trained on data from many different sources of

varying size and quality. There is a well-established method for combining

n-gram models estimated from different corpora, as explained in Section

3.5. Because neural networks use a complex nonlinear function to predict

the probabilities, such a method for merging multiple neural networks into

79

Neural Network Language Models

one does not exist.

Certainly multiple neural networks can be trained on different data sets

and the probabilities can be combined by interpolation. The best published

results on speech recognition tasks are often reached by combining many

different models. However, training different models from many data sets

would be laborious, since the hyperparameters need to be optimized for

each data set separately, and such a system would be impractical to use,

requiring evaluation of every component model.

Often a large amount of general data can be collected from sources that

do not match the task so well, for example the Internet or newspaper

archives. The amount of data that matches the task well, for example

transcribed data is typically a lot smaller. If all training data is given

equal importance, the large amount of worse data will dominate the model.

The problem is analogous to model adaptation, where a model is trained

on a large set of general data and later adapted using data specific to the

problem domain or adaptation data recorded from the person using the

system.

Publication III summarizes the methods that have been used for combin-

ing different data sets in neural network training:

• On each training epoch, use only a subset of the worse-quality data set

that is randomly sampled before the epoch.

• Train first on general data and toward the end of the training on in-

domain data.

• Train a model on general data and adapt it for example by adding a layer

that is trained on in-domain data, while keeping the rest of the model

fixed.

• Train a multi-domain model by adding a small set of parameters that

are switched according to the domain. This requires that the domain is

known during inference.

In Publication III the multi-domain approach and adding an adaptation

layer were explored for training language models in the absence of large

in-domain corpora. An additional input was added to the network that

identifies the data set. This input was mapped to a domain-specific vector

80

Neural Network Language Models

that modified the hidden layer preactivations.

Publication V evaluated two methods for combining conversational Finn-

ish data sets. A novel method was introduced that weights the parameter

updates based on the data set, according to predefined weights. In other

words, the learning rate was dependent on from which data set the mini-

batch was taken from. This method was compared to randomly sampling

a subset of the large data set in the beginning of each training epoch [79,

p. 206]. Both approaches suffer from the fact that there are no methods for

optimizing the weights and sampling coefficients. An advantage of random

sampling is that it also makes training faster.

4.7 Implementation of TheanoLM

TheanoLM is a neural network language modeling toolkit implemented us-

ing Theano [1], a Python library for evaluating mathematical expressions.

It was used in Publications IV and V and released to the public.

Theano provides an interface that is similar to the well-known scientific

computing package NumPy, for expressing functions such as the mapping

of neural network inputs to outputs. However, while NumPy performs

mathematical operation on numerical data, Theano functions are defined

for symbolic matrices and higher-dimensional tensors. They are stored

as a graph of the computation required to produce the output from the

input, which is made possible by the high level of abstraction in Python. By

creating a computation graph instead of performing the actual computation

directly, it is possible to perform differentiation using the backpropagation

algorithm.

For example, the Python code in Listing 4.1 shows how a highway net-

work (see Section 4.4.2) layer function can be defined using Theano inter-

face. It defines the preactivations as an affine transformation of the layer

input and parameters, all of which are symbolic variables. The preactiva-

tions s and t of the normal output and the transform gate are computed

together, because large matrix operations can be parallelized efficiently.

The weight and bias are concatenations of the individual weight matrices

and bias vectors. Then the computed preactivation matrix is sliced into two

parts. s uses hyperbolic tangent activation and t uses sigmoid activation.

Finally the output is defined to be either the normal output or the input of

the layer, as selected by the sigmoid gate.

81

Neural Network Language Models

output

+

×

× −

tanh σ 1.0

slice slice

size +

b dot

W x

Figure 4.5. Computation graph for a highway network layer before optimizations.

Listing 4.1. Theano implementation of a highway network layer

preact = tensor . dot (layer_input , weight) + bias

s = tensor . tanh (preact [: , : s i ze])

t = tensor . nnet . sigmoid (preact [: , s i ze :])

layer_output = s ∗ t + layer_input ∗ (1 .0 − t)

The code in Listing 4.1 would produce a computation graph that is

depicted in Figure 4.5. After creating the graph, Theano applies various

optimizations that make it more compact.

After the parameters are selected, the output of the network can be com-

puted by feeding the graph with actual inputs and performing a forward

pass. Section 4.3.2 describes how the backpropagation algorithm can be

used to compute the gradient of a nested function at given input. Theano

takes this approach a step further. Instead of computing the gradient

using given input values, it creates a computation graph that describes the

82

Neural Network Language Models

gradient given a symbolic input tensor. The advantage is that the gradient

can be further differentiated to obtain higher order derivatives.

Word Embeddings

Sequences
Words

Vocabulary Indices

Sequences
Words

lorem ipsum dolor sit amet
sed do eiusmod tempor incididunt
ut enim ad minim veniam
quis nostrud exercitation ullamco

Sentences

Figure 4.6. TheanoLM processes data in
mini-batches.

Theano automatically performs the

computations on a GPU, when available.

GPUs can perform operations on large

matrices efficiently in parallel. It is use-

ful to process as much data in parallel

as is possible to fit in the GPU memory.

TheanoLM cuts sentences according to

the maximum sequence length param-

eter, which limits the distance to which

backpropagation is truncated. Several

sequences are packed in a mini-batch to

make computation more efficient, con-

trolled by the batch size parameter.

Every layer in a TheanoLM network

processes one mini-batch at a time, as

shown in Figure 4.6. The input of the

network is a matrix of vocabulary in-

dices, whose first dimension is the time

step, and second dimension is the se-

quence index. When a mini-batch con-

tains sequences of different length, the

shorter sequences are padded and a bi-

nary matrix is used to mask out ele-

ments that are past the sentence end.

The projection layer transforms the in-

put matrix to a three-dimensional tensor, by mapping the vocabulary

indices to continuous-valued vectors.

Each successive layer defines an operation that takes one or more three-

dimensional tensors as input and produces a three-dimensional tensor of

activations. The input of a layer is defined by the network topology, and

can include outputs of any previously defined layers. The layer function

can be freely defined using input from every time step, within the limits of

the mini-batch. Recurrent layers typically define the output as a recursion

that uses only past context, but bidirectional and convolutional layers may

use inputs from both directions.

As discussed in Section 4.4, the subgradients of the training cost may

83

Neural Network Language Models

be very small or large and this can cause numerical instability. A simple

step taken by TheanoLM to avoid the gradients exploding is to normalize

the subgradient to a specified maximum norm if the norm gets larger [73,

p. 1315]. It is important to perform the normalization after any adaptive

gradient method is applied, because adaptive gradient methods may pro-

duce very large values when the subgradients have been small on average.

An action that is taken to avoid numerical instability caused by very small

gradients is to add a small constant to the norm of gradients before divid-

ing by that value. Similarly a small value is added to probabilities before

taking the logarithm.

4.8 Using NNLMs to Rescore Decoder Output

Evaluation of neural network language models is currently still too slow to

be used in the first decoding pass. In practice they are applied in a second

pass that is performed on a list of n best hypotheses (n-best list) or a word

lattice. In Publication IV we rescored n-best lists, except with RWTHLM,

which was able to rescore word lattices. In Publication V a word lattice

decoder was developed in TheanoLM.

The challenge in rescoring word lattices using RNN language models

is that in principle RNNs use all the context from the beginning of the

sentence up to (but not including) the word to be predicted. If the entire

history is considered, all paths through the lattice are unique, and the

search space is as large as an n-best list that contains all the possible

paths through the lattice. Thus some heuristics are needed to keep the

search space reasonable.

The decoder is implemented after the conceptual model of token passing.

In the beginning an initial token is created in the start node. Then the

nodes are processed in topological order. Three types of pruning are applied

to the tokens of a node, before propagating the tokens to the outgoing links

[90]:

• N-gram recombination. The contexts of two tokens in the same node

are considered similar if the n previous words match, and only the best

token is kept. n is selected experimentally.

• Cardinality pruning. Only a specific amount of best tokens are kept

in each node.

84

Neural Network Language Models

• Beam pruning. Tokens whose probability is low compared to the best

token are pruned, similar to beam pruning in speech recognizers.

N-best lists and word lattices contain the original n-gram model proba-

bilities from the first decoding pass. Usually the best result is obtained by

interpolating the NNLM probabilities with the original probabilities. A

straightforward approach is linear interpolation of log probabilities:

log p∗(w) = (1− λ) log pbo(w) + λ log pnn(w) (4.33)

The resulting probability is the product of the component probabilities

raised to the power of the weights:

p∗(w) = pbo(w)1−λ ∗ pnn(w)λ (4.34)

However, Equation 4.34 is not a probability distribution. In order to get

real probabilities, it should be normalized so that the probabilities sum to

one:

log p(w) = log p∗(w)− log
∑
w

p∗(w) (4.35)

This kind of interpolation is called log-linear interpolation [47]. Comput-

ing the normalization can be challenging when w is a word sequence. We

used log-linear interpolation in Publications IV and V to combine NNLM

probabilities with lattice probabilities. However, as correct normalization

is not important in speech recognition, we used Equation 4.33 without

normalization.

Linear interpolation is mathematically simple, but when implement-

ing it, care needs to be taken when converting the log probabilities into

probabilities, in order to avoid floating point underflow.

p(w) = (1− λ) pbo(w) + λ pnn(w) (4.36)

4.9 Details on the NNLMs Used in This Thesis

The shortlist approach was used in the NNLM experiments in Publication

III. A feedforward neural network predicted the probability for the 1024

most frequent words (or subwords). The input vocabulary was larger and

included a special token for out-of-vocabulary words. The input of the net-

work was three previous words and the data was processed in mini-batches

85

Neural Network Language Models

of 200 samples. The network was trained only on n-grams that end in an in-

shortlist word, so the output vocabulary did not include an out-of-shortlist

(OOS) token. The probability for OOS words was predicted by a 4-gram

back-off model alone. In this approach, the in-shortlist word probabilities

given by the NNLM have to be normalized using the probabilities given by

the n-gram model [79, p. 203].

In Publication IV, recurrent neural networks trained using three differ-

ent toolkits were compared. In all cases, 2000 word classes were created

from a vocabulary of 2.4 million word forms to keep the computation fea-

sible. However, RNNLM used a different frequency-based method for

deriving the classes and a hierarchical softmax output layer [62].

In Publication V, the shortlist approach was used as a baseline for RNN

language models. Words, subwords, word classes, and subword classes were

used as the language modeling unit. The sequence length in a mini-batch

was limited to 25 units for efficiency. The input and output vocabularies

were identical, both using a special OOS token.

The OOS token models the total probability mass of all OOS words.

The correct way to compute the probability of any OOS word is to divide

the probability predicted for the OOS token by the NNLM according to

the probabilities predicted for the OOS words by the n-gram model. It

requires evaluation of the n-gram probabilities of all the OOS words in

the same context. To keep the implementation simple and fast, unigram

probabilities were used for OOS words. In the article we tried also a simple

approximation of replacing the OOS probability with a 4-gram probability

[72], but it did not work well because the probability mass that the two

models predicted for the OOS words was too different.

In Publication III the feedforward network was trained using SGD. In

Publications IV the other toolkits used SGD, but with TheanoLM we used

Adagrad. Adagrad was found to converge fast in many cases and was also

used in Publication V.

Sampling-based approximations of softmax were evaluated for Publica-

tion V. They were less stable in our experiments and the speed benefit

was smaller than expected. On reason for the disappointing speed is that

those methods cannot be implemented on a GPU as efficiently using dense

matrix products. The network contained an LSTM layer and a four layers

deep highway network. The deeper architecture also means that relatively

less can be gained by improving the speed of the output layer.

One reason for the instability may be the distribution of words in the

86

Neural Network Language Models

data. The sampling distribution and the sample size have a great impact

on the speed of convergence and numerical stability. Sampling from a

uniform distribution failed to converge to a good solution. The unigram

power distribution [63, p. 3114] produced clearly better models. However,

when using the power distribution, the training time grew because the

multinomial sampling implementation in Theano was slow.

Nevertheless, the best Finnish shortlist model was trained using NCE.

We were unable to get any results using BlackOut.

87

Neural Network Language Models

88

5. Collecting Conversational Finnish
Data

5.1 Aalto University DSPCON Corpus

The work on this thesis started by collecting conversational Finnish train-

ing and test data. The data collection continued until 2016. Students of the

Digital Signal Processing course at Aalto University were asked to have

conversations in pairs. Each student recorded at least 20 utterances, and

transcribed their own utterances. Initially the quality of the transcripts

was quite varying, so they were reviewed by researchers and errors were

corrected. Errors were found by trying forced alignment of the transcript

on the audio with a small beam.

Part of the data was dedicated as development and evaluation sets. The

intention was that the evaluation set could be used to track the progress

in conversational Finnish ASR during and after this thesis work. For this

purpose, the task was intentionally made more challenging and generic by

transcribing some very informal radio conversations and adding these to

the development and evaluation sets. Some of them contain also music in

the background. Alternative word forms for scoring purposes were added

to the development and evaluation set transcripts by the author.

The data set is not very large, in total 9.8 hours of audio, but perhaps

even more important to speech recognition is that the number of different

speakers is quite high. 5281 utterances were spoken by 218 different male

students and 24 female students. The audio was recorded using headsets,

eliminating most of the background noise, but some noise is still audible.

The corpus has been made available for research purposes.1

1DSPCON corpus metadata can be accessed on META-SHARE:
http://urn.fi/urn:nbn:fi:lb-2015101901

The corpus can be downloaded from the Language Bank of Finland:
http://urn.fi/urn:nbn:fi:lb-201609191

89

Collecting Conversational Finnish Data

5.2 Collecting Language Modeling Data from the Internet

Hours of transcribed speech is required for training phoneme models, and

even that is usually not enough for estimating good language models. The

fact that the acoustics and language are modeled separately (see Section

2.2) greatly simplifies data collection, as the texts used for estimating

language models do not need to be transcriptions of recordings that we

possess; it is enough that the text is similar to how we speak. Written

conversations generally are somewhat different to transcriptions—written

text is usually better structured, words are often less colloquial, and

speech disfluencies such as “uh” and “um” are omitted—but so much data

is available on the Internet that with clever data selection it can provide

valuable resources for modeling conversational language.

The most important data set for conversational Finnish language model-

ing used in this thesis consisted of 2.7 billion words or 280 million sentences

after normalization. In Publication III, the data was filtered into a set of

76 million words or 9.0 million sentences. The filtered data was combined

with DSPCON corpus to form the language modeling data in Publications

IV and V.

First part of the data was collected using Google searches similar to

Bulyko et al. [12], but this method was soon found out to be too inefficient

for finding large amounts of conversational data. The rest of the data was

obtained by crawling conversation sites using customized Python scripts.

The scripts were written on top of the Scrapy application framework, which

is designed for extracting structured data. The scripts, called web spiders,

start from a top-level web page and follow the links to conversation areas

and individual conversation threads.

Crawling static web pages is straightforward. A spider implementation

is required only to specify the rules for following links to different conver-

sations, and a function for parsing messages from conversation threads.

Iterating through nested elements in an HTML document is facilitated

by XPath (XML Path Language) selectors, a mechanism for identifying

elements in an HTML document or inside another element. Crawling

sites that generate pages dynamically on client side is a bit more involved.

Selenium WebDriver library was used to construct dynamic HTML pages

by controlling a web browser that supports JavaScript.

The spiders extracted identifiers from the HTML code, uniquely identify-

ing each message and conversation. The purpose was to avoid saving the

90

Collecting Conversational Finnish Data

same message multiple times, and enable filtering to be performed per mes-

sage or per conversation, instead of per sentence. Estimating probabilities

from individual sentences would be unreliable. Publication II concluded

that filtering per message is better than filtering per conversation.

For Publication III, a data set of Estonian conversations was collected

using the same method. It consisted of 340 million words or 33 million

sentences after normalization. By choosing the filtering method that

improved speech recognition accuracy the most, data size was reduced to

82 million words or 6.6 million sentences.

5.3 Text Normalization

Text collected from the Internet is very heterogeneous. Normalization

is needed to get suitable training data for the task in hand. Preparing

the normalization pipeline can take a lot of work, but is less interesting

from scientific perspective, so it is often left aside from publications. The

purpose of the preprocessing is to format the text as closely as possible to

how a person would pronounce it. A complex set of regular expressions

were used to process the text. Below is a list of the main steps used to

process the Finnish web data:

• Some sanity checks were performed to filter out garbage. A too long line,

a too long word, or a line that repeats the same sequence more than three

times, was taken as indication that the line is not proper text.

• Headers and annotations used by some conversation sites to mark e.g.

text style were filtered out, as well as emoticons and program code.

• Abbreviations, contractions, and acronyms were expanded to their orig-

inal form. Numbers, number ranges, dates, unit symbols, etc. were

expanded to how they are pronounced. Inflected acronyms and numbers,

denoted by a subsequent colon and suffix, were expanded to the correctly

inflected word forms.

• In some cases, where punctuation marks would be pronounced—for

example in real numbers and domain names—they were expanded to

letters. In other cases, periods, colons, semicolons, and parentheses were

taken as sentence breaks, and other punctuation marks were removed.

91

Collecting Conversational Finnish Data

• Words that contain a sequence of letters that does not exist in Finnish

language (including loan words) were either deleted or corrected. Repeti-

tion of a single character (e.g. “noooo”) was shortened, but in other cases

the word was deleted.

• All letters were translated to lower case and all characters except letters

were removed. As online conversations are often incorrectly capitalized,

this data was not used for learning correct capitalization, and it was not

expected in the test data.

How to expand numbers to letters is a surprisingly difficult question.

Section 2.5.2 lists 20 ways in which the number 19 can be pronounced.

Ideally we would like the occurrence of 19 in the training text to increase

the probability estimate of all the pronunciation variants in that context.

Properly solving the problem would require significant effort. Our simple

way to sidestep the problem was to replace all numbers with the standard

Finnish pronunciation. The effect on the overall error rate is not large, as

it is quite likely that numbers are recognized correctly even if the speaker

uses a slightly different pronunciation.

5.4 Text Filtering

There are many conversation sites on the Internet, with huge amounts

of text. Even when downloading conversations only from a specific site

that should in principle match the targeted language well, free-form con-

versations always contain different writing styles and often even different

languages.

The task of selecting text that is similar to some in-domain example

text, from a larger corpus that is not domain specific, has been studied

before in different contexts. In this case the in-domain text is transcribed

conversations. It is used to select text segments from a large data set

of written conversations from the Internet. The text segments can be

sentences, or for example messages in a social media site.

The question of how to select segments that are similar to the in-domain

text is not trivial to answer. Intuitively the selected segments should

contain many of the same words as the in-domain data. An approach that

is common in information retrieval is to compare tf–idf statistics of the text

segments (documents) and the query, for example using cosine similarity

92

Collecting Conversational Finnish Data

[56]. This is a heuristic technique, but popular because of its simplicity.

It is possible to derive approaches that are theoretically better justified,

by regarding words as samples from some random phenomenon, which

is not know, but can be approximated by a language model. Information

theory provides measures for comparing probabilistic models and samples

drawn from a probability distribution. Several different ways to use these

measures for the text selection task have been proposed in the past. The

most straightforward technique involves estimating a language model from

the in-domain data and computing its empirical perplexity or cross-entropy

on the text segments [54]. (Recall from Equation 3.20 that perplexity is

simply the exponent of cross-entropy, so they are equivalent with regard to

text selection.)

Perplexity measures how well a model predicts a text segment. When

the model is estimated on the in-domain data, perplexity of a text segment

is related to how similar the in-domain data and the text segment are,

but does not explicitly measure the objective of the task. The aim is to

find a set of text segments, so that a model estimated on them gives a low

perplexity for the in-domain data. Klakow proposed a method that trains

a language model from the unfiltered corpus, and from the same data with

one text segment removed at a time [48]. Each model is used to compute

the perplexity of the in-domain data. If the perplexity of the in-domain

data is higher when a segment is removed, the segment should be included

in the selection set.

Another way to see the problem is as a classification task with only

positive examples (text segments that are in-domain data) and unlabeled

examples (text segments of which we do not know whether they are in-

domain data or not). The probability of a random text segment being

in-domain data can be expressed using a model of the in-domain data and

a model of the unlabeled data, by applying the Bayes rule. This leads to

the selection criterion proposed by Moore and Lewis [66] that compares the

perplexity of an in-domain model to the perplexity of a model estimated

from the same amount of unfiltered web data.

All the above methods have one shortcoming: They compute a score for

every text segment individually, and then select all the segments whose

score is above some fixed threshold. Text segments that are very probable

according to the in-domain model are selected, regardless of how many

similar sentences have already been selected. Text segments that would

rarely occur according to the in-domain model are never selected. In other

93

Collecting Conversational Finnish Data

words, the distribution of sentences in the selection set is biased toward

the high-probability ones.

Sethy et al. abandoned the score-and-filter approach [82]. They aimed

to build a selection set whose distribution of sentences is similar to the

distribution in the in-domain data. The similarity of two distributions

can be measured using relative entropy. Relative entropy of two language

models is defined in Equation 3.21. In this case, a unigram model is

assumed, and only the change in relative entropy caused by adding the

new words is computed, making the decision rule fast to use. As noted in

Publication III, the algorithm itself cannot be parallelized, but multiple

passes can be run in parallel.

Publications II and III compare different methods for filtering language

model training data that has been downloaded from the Internet. The

algorithms were slightly modified to work with very large data sets and

agglutinative languages.2 Subword models were used, instead of word

models, as a solution to estimating the probability of unknown words (see

Section 3.6). This was necessary especially in methods that train models

from the development data, because our development set was very small.

An efficient implementation of Klakow’s algorithm was presented that

requires counting once all the words that occur in the training data, and

then for computing the score of a text segment, counting the occurrences

of the development set words in the text segment.

In the Finnish task, the Sethy’s algorithm produced the smallest data

set and best WER. In the Estonian task, Klakow’s algorithm gave the best

WER, perhaps because there were more development data available.

2The implemented methods have been made available:
https://github.com/senarvi/senarvi-speech/tree/master/filter-text

94

6. Conclusions

In 2009, a few years before I started working on this thesis, WER close to

10 % was obtained on clean speech from Speecon corpus, and close to 20 %

on a slightly more difficult SpeechDat task [75]. These can be considered

good results. Attempt to recognize conversational Finnish using similar

standard Finnish models in Publication II showed that there is a large

mismatch in the data, WER being above 70 %.

The aim of this thesis was to develop a reasonably good recognizer for

conversational Finnish. A concrete objective was set when we tried conver-

sational English speech recognition in Publication I. A large corpus of 72

hours of meeting speech was used, and the word error rate was approxi-

mately 40 %. A realistic target was to develop a conversational Finnish

speech recognizer with as good performance.

It was clear that better training data was needed. The work started by col-

lecting a small corpus of transcribed conversations. The DSPCON corpus

has been updated until 2016 and released for researchers. Development

and evaluation sets were created so that the progress in conversational

Finnish ASR can be tracked throughout the thesis and by researchers

working on this task afterwards. Data that is very difficult for automatic

speech recognizers was purposefully selected to the evaluation set.

Language model training data can be found from the Internet, but there

are differences between the text found online and the language used while

speaking. Data was scraped from Internet conversation sites, to find

out how much Internet conversations can benefit conversational Finnish

language modeling. Publication II described the problem in conversational

Finnish vocabulary and the data collection efforts, and proposed solutions

for selecting suitable data. First attempts to recognize conversational

Finnish using the new data were made, and 57.5 % WER was obtained

using only web data for language modeling, and 55.6 % by combining all

95

Conclusions

the available data.

The work was continued in Publication III. Already 2.6 billion tokens

of text were collected from the Internet, so efficient methods were needed

for reducing the data size by discarding data that is not relevant for the

task. The size of the data set was reduced to 76 million words, yet the

model performance was improving. With only web data used for language

model training, 54.1 % WER was obtained. Clearly Internet conversations

improved the language models, but a huge amount of data was needed for a

relatively small improvement. Some idea of the relative importance of the

web data and the transcribe data is given in Publication V, which reports

that the EM optimization gave approximately equal mixture weights for

both data sets, while there was only 61,000 words of transcribed text.

Pronunciation modeling was studied in Publication I. A method for auto-

matically pruning pronunciations was evaluated on an English dictionary,

but did not give significant improvement. The same method was used

when adapting models for foreign names in Publication V. However, in

conversational Finnish language models, different written forms of the

same word were kept as different units.

As subword models at first did not seem to improve over word models, we

studied whether class-based models could be a solution to the data sparse-

ness. In Publication IV, interpolating a word model with a class model

provided a small improvement. In Publication V, class models consistently

outperformed word models even without interpolation. In the former pub-

lication the vocabulary was limited to 200,000 words, while in the latter

publication the vocabulary contained more than two million words. This

is important in the future when the state of the art is pushed forward by

using larger models, larger vocabularies, and more computational power.

Recently deep neural networks have benefited especially conversational

speech recognition because of their ability to generalize to unseen data.

Existing neural network language modeling toolkits were found difficult

to extend with new methods, or slow because of lacking GPU support.

Publication IV presented an easily extensible language modeling toolkit,

which was made possible by the very high level of abstraction in Theano

library. It can also utilize GPUs to efficiently train recurrent neural net-

works. 48.4 % WER was achieved in the conversational Finnish task when

interpolating neural network probabilities with those from a traditional

n-gram model—however, the same evaluation data was used for optimizing

the language model weight. In the light of the experiments, GPU training

96

Conclusions

was seen important in order to keep the training times reasonable with

complex models and large data sets. GPUs also bring new difficulties,

because the GPU boards offer less memory, memory transfers are slow,

and care has to be taken to utilize the parallel processing optimally.

In Publication V deep neural networks were used also for acoustic model-

ing. Different approaches were compared that address problems with large

vocabularies, especially with neural network language models. A novel

result of that publication is that while the subword n-gram models did not

outperform word models, neural network subword models did, even when

the baseline model used a very large vocabulary consisting of millions of

words. This is probably due to the ability of recurrent neural networks to

model long contexts more efficiently than variable-order n-gram models.

In this final paper a WER of 27.1 % was achieved in the conversational

Finnish speech recognition task.

In the last paper we managed to get a WER that was under the 40 %

target. To large part credit of reaching the milestone is due to the data

collection and improved language models that were developed in this thesis.

Meanwhile, there has been ongoing research on acoustic modeling that has

benefited the whole speech recognition community, as the latest methods

are implemented in the Kaldi speech recognition toolkit. These advances

led us to exceed the target performance even more than was expected. See-

ing how important sharing the implementations is for speech recognition

research, all the code developed for the experiments in this thesis has

been made publicly available. A particularly significant contribution to the

community is publishing the TheanoLM toolkit that will make it easier to

experiment on neural network language models.

6.1 Future Work

The accuracy that we obtained for conversational Finnish speech recog-

nition is already useful in some applications, but many challenges were

still left to be solved by future research. There is currently a huge amount

of research aimed toward improving modeling with artificial neural net-

works. Only a few of all the interesting approaches that could be applied to

language modeling were explored in this thesis. Below are some directions

into which this research could be continued.

One of the most interesting recent developments in machine translation

is attention, a mechanism that learns to select which input words are the

97

Conclusions

most important in predicting an output word [3]. It could be a solution for

utilizing long-distance cues in language models too [59].

The state-of-the-art NNLMs are quite shallow networks (but recurrent),

while the best computer vision models contain many layers. One inter-

esting question is why deep networks do not seem to benefit language

modeling as much. We have already started research at Aalto University

on exploiting deeper networks in language modeling.

Language models traditionally predict the probability of a word given

the words that precede it, obeying the chain rule in Equation 3.1. However,

when rescoring n-best lists, the future words are known too. This would

open up new possibilities, such as bidirectional recurrent networks [78],

convolutional networks [19], and attention over both past and future words.

Lately there has been a lot of interest in generative adversarial networks

in computer vision [29]. The general idea—that a neural network could

learn by competing with another neural network—has also been used to

teach artificial intelligence to play Go [86]. Since language models can be

used to generate text, a similar technique could be used to learn better

language models [99].

In practice the usefulness and performance of neural network models is

limited by the computational cost of training and using them. In this thesis

NNLMs were used only for rescoring the output of a speech recognizer,

meaning that the quality of the result may be limited by the quality of the

generates word lattices, and the process is too slow for online recognition.

Future applications demand especially faster evaluation of the NNLM

probabilities. One way to speed up the inference would be to use unnor-

malized models [83]. Both memory consumption and speed could also be

improved by parallelizing the model to multiple GPUs.

Finally, conversations differ from planned speech in many other ways

besides the vocabulary, and these changes are not necessarily visible in

written conversations. The flow of speech in a conversation may be dis-

fluent and usually does not follow the sentence structure of written text.

Modeling these differences explicitly may be necessary to have as accurate

system as possible [41].

98

References

[1] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller,
Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly
Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James
Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nico-
las Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson,
Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul
Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron
Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume
Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Du-
moulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat,
Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gul-
cehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi,
Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek
Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean
Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin,
Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine
Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic,
Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi,
Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel
Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski,
John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel
Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne
Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski,
Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal
Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J.
Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, and
Ying Zhang. Theano: A Python framework for fast computation of mathe-
matical expressions. Computing Research Repository, abs/1605.02688, May
2016.

[2] Ebru Arisoy, Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramabhadran.
Deep neural network language models. In Proceedings of the Workshop
on the Future of Language Modeling for HLT (WLM): Will We Ever Really
Replace the N-gram Model?, pages 20–28, Stroudsburg, PA, USA, June 2012.
Association for Computational Linguistics.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Proceedings of the
3rd International Conference on Learning Representations (ICLR), May 2015.

99

References

[4] L. Bahl, P. Brown, P. de Souza, and R. Mercer. Maximum mutual information
estimation of hidden Markov model parameters for speech recognition. In
Proceedings of the 1986 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), volume 1, pages 49–52, Piscataway, NJ,
USA, April 1986. IEEE.

[5] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maxi-
mization technique occurring in the statistical analysis of probabilistic func-
tions of Markov chains. The Annals of Mathematical Statistics, 41(1):164–
171, February 1970.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin.
A neural probabilistic language model. The Journal of Machine Learning
Research, 3:1137–1155, February 2003.

[7] Yoshua Bengio and Jean-Sébastien Senécal. Quick training of probabilis-
tic neural nets by importance sampling. In Christopher M. Bishop and
Brendan J. Frey, editors, Proceedings of the 9th International Workshop on
Artificial Intelligence and Statistics (AISTATS), New Jersey, USA, January
2003. Society for Artificial Intelligence and Statistics.

[8] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, March 1994.

[9] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A
maximum entropy approach to natural language processing. Computational
Linguistics, 22(1):39–71, March 1996.

[10] Hervé Bourlard and Nelson Morgan. A continuous speech recognition system
embedding MLP into HMM. In David S. Touretzky, editor, Advances in
Neural Information Processing Systems 2, pages 186–193. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 1990.

[11] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra,
and Jenifer C. Lai. Class-based n-gram models of natural language. Compu-
tational Linguistics, 18(4):467–479, December 1992.

[12] Ivan Bulyko, Mari Ostendorf, and Andreas Stolcke. Getting more mileage
from web text sources for conversational speech language modeling using
class-dependent mixtures. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on
Human Language Technology (HLT-NAACL): Short Papers, volume 2, pages
7–9, Stroudsburg, PA, USA, May/June 2003. Association for Computational
Linguistics.

[13] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. Computer Speech and Language, 13(4):359–
394, October 1999.

[14] Xie Chen, Xunying Liu, Mark J. F. Gales, and Philip C. Woodland. Recurrent
neural network language model training with noise contrastive estimation
for speech recognition. In Proceedings of the 2015 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), pages 5411–5415,
Piscataway, NJ, USA, April 2015. IEEE.

100

References

[15] Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo, Antti Puurula, Janne
Pylkkönen, Vesa Siivola, Matti Varjokallio, Ebru Arisoy, Murat Saraçlar,
and Andreas Stolcke. Morph-based speech recognition and modeling of out-
of-vocabulary words across languages. ACM Transactions on Speech and
Language Processing (TSLP), 5(1):3:1–3:29, December 2007.

[16] Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes.
In Proceedings of the ACL 2002 Workshop on Morphological and Phonologi-
cal Learning (MPL), volume 6, pages 21–30, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics.

[17] Mathias Creutz and Krista Lagus. Unsupervised morpheme segmentation
and morphology induction from text corpora using Morfessor 1.0. Report
A81 in Publications in Computer and Information Science, Neural Networks
Research Centre, Helsinki University of Technology, 2005.

[18] Mathias Creutz and Krista Lagus. Unsupervised models for morpheme
segmentation and morphology learning. ACM Transactions on Speech and
Language Processing (TSLP), 4(1):3:1–3:34, January 2007.

[19] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Lan-
guage modeling with gated convolutional networks. Computing Research
Repository, abs/1612.08083, September 2017.

[20] K. H. Davis, R. Biddulph, and Stephen Balashek. Automatic recognition of
spoken digits. The Journal of the Acoustical Society of America, 24(6):637–
642, November 1952.

[21] Steven B. Davis and Paul Mermelstein. Comparison of parametric represen-
tations for monosyllabic word recognition in continuously spoken sentences.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4):357–
366, August 1980.

[22] Sabine Deligne and Frédéric Bimbot. Inference of variable-length linguistic
and acoustic units by multigrams. Speech Communication, 23(3):223–241,
November 1997.

[23] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159, July 2011.

[24] Will J. Ebel and Joseph Picone. Human speech recognition performance on
the 1994 CSR Spoke 10 corpus. In Proceedings of the ARPA Spoken Language
Systems Technology Workshop, pages 53–59, January 1995.

[25] Michael Finke and Alex Waibel. Speaking mode dependent pronunciation
modeling in large vocabulary conversational speech recognition. In Pro-
ceedings of the 5th European Conference on Speech Communication and
Technology (EUROSPEECH), pages 2379–2382. ISCA, September 1997.

[26] James W. Forgie and Carma D. Forgie. Results obtained from a vowel
recognition computer program. The Journal of the Acoustical Society of
America, 31(11):1480–1489, November 1959.

[27] Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. Learning to
forget: Continual prediction with LSTM. Neural Computation, 12(10):2451–
2471, October 2000.

101

References

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, Cambridge, MA, USA, 2016.

[29] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates, Inc., Red Hook, NY, USA,
2014.

[30] Joshua Goodman. Classes for fast maximum entropy training. In Proceedings
of the 2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 1, pages 561–564, Piscataway, NJ, USA, May
2001. IEEE.

[31] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
Connectionist temporal classification: Labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the 23rd International
Conference on Machine Learning (ICML), pages 369–376, New York, NY,
USA, June 2006. ACM.

[32] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with
recurrent neural networks. In Eric P. Xing and Tony Jebara, editors, Pro-
ceedings of the 31st International Conference on Machine Learning (ICML),
volume 32 of Proceedings of Machine Learning Research, pages 1764–1772.
PMLR, June 2014.

[33] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models. In Proceedings
of the 13th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 297–304, New Jersey, USA, May 2010. Society for Artificial
Intelligence and Statistics.

[34] Michael U. Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image statistics.
The Journal of Machine Learning Research, 13(1):307–361, February 2012.

[35] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine, 29(6):82–97,
November 2012.

[36] Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, and Mikko Kurimo. Mor-
phologically motivated language models in speech recognition. In Timo
Honkela, Ville Könönen, Matti Pöllä, and Olli Simula, editors, Proceedings
of the International and Interdisciplinary Conference on Adaptive Knowledge
Representation and Reasoning (AKRR), pages 121–126. Helsinki University
of Technology, Laboratory of Computer and Information Science, June 2005.

[37] Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, Mikko Kurimo, Sami Virpi-
oja, and Janne Pylkkönen. Unlimited vocabulary speech recognition with
morph language models applied to Finnish. Computer Speech and Language,
20(4):515–541, October 2006.

102

References

[38] Teemu Hirsimäki, Janne Pylkkönen, and Mikko Kurimo. Importance of high-
order n-gram models in morph-based speech recognition. IEEE Transactions
on Audio, Speech, and Language Processing, 17(4):724–732, 2009.

[39] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
Diplomarbeit, Technische Universität München, München, Germany, June
1991.

[40] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, November 1997.

[41] Paria Jamshid Lou and Mark Johnson. Disfluency detection using a noisy
channel model and a deep neural language model. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (ACL),
volume 2 (Short Papers), pages 547–553, Stroudsburg, PA, USA, August
2017. Association for Computational Linguistics.

[42] Frederick Jelinek. Continuous speech recognition by statistical methods.
Proceedings of the IEEE, 64(4):532–556, April 1976.

[43] Frederick Jelinek and Robert L. Mercer. Interpolated estimation of Markov
source parameters from sparse data. In Edzard S. Gelsema and Laveen N.
Kanal, editors, Proceedings of the Workshop on Pattern Recognition in Prac-
tice, pages 381–397, Amsterdam, The Netherlands, May 1980. North-Holland
Publishing Company.

[44] Shihao Ji, S. V. N. Vishwanathan, Nadathur Satish, Michael J. Anderson, and
Pradeep Dubey. Blackout: Speeding up recurrent neural network language
models with very large vocabularies. In Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016.

[45] Slava M. Katz. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-35(3):400–401, March 1987.

[46] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In Proceedings of the 3rd International Conference on Learning
Representations (ICLR), May 2015.

[47] Dietrich Klakow. Log-linear interpolation of language models. In Proceedings
of the 5th International Conference on Spoken Language Processing (ICSLP).
ISCA, December 1998.

[48] Dietrich Klakow. Selecting articles from the language model training cor-
pus. In Proceedings of the 2000 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), volume 3, pages 1695–1698, Pis-
cataway, NJ, USA, June 2000. IEEE.

[49] Reinhard Kneser and Hermann Ney. Forming word classes by statistical clus-
tering for statistical language modelling. In Reinhard Köhler and BurghardB.
Rieger, editors, Contributions to Quantitative Linguistics, pages 221–226.
Kluwer Academic Publishers, Dordrecht, the Netherlands, 1993.

[50] Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram
language modeling. In Proceedings of the 1995 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), pages 181–184,
Piscataway, NJ, USA, May 1995. IEEE.

103

References

[51] Oskar Kohonen, Sami Virpioja, and Krista Lagus. Semi-supervised learning
of concatenative morphology. In Proceedings of the 11th Meeting of the ACL
Special Interest Group on Computational Morphology and Phonology, pages
78–86, Stroudsburg, PA, USA, July 2010. Association for Computational
Linguistics.

[52] Mikko Kurimo, Antti Puurula, Ebru Arisoy, Vesa Siivola, Teemu Hirsimäki,
Janne Pylkkönen, Tanel Alumäe, and Murat Saraclar. Unlimited vocabu-
lary speech recognition for agglutinative languages. In Proceedings of the
2006 Human Language Technology Conference of the North American Chap-
ter of the Association of Computational Linguistics (HLT-NAACL), pages
487–494, Stroudsburg, PA, USA, June 2006. Association for Computational
Linguistics.

[53] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the
application of the theory of probabilistic functions of a markov process to
automatic speech recognition. The Bell System Technical Journal, 62(4):1035–
1074, April 1983.

[54] Sung-Chien Lin, Chi-Lung Tsai, Lee-Feng Chien, Keh-Jiann Chen, and
Lin-Shan Lee. Chinese language model adaptation based on document
classification and multiple domain-specific language models. In Proceedings
of the 5th European Conference on Speech Communication and Technology
(EUROSPEECH), pages 1463–1466. ISCA, September 1997.

[55] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathemati-
cal Statistics and Probability, volume 1, pages 281–297, Berkeley, CA, USA,
1967. University of California Press.

[56] Milind Mahajan, Doug Beeferman, and X. D. Huang. Improved topic-
dependent language modeling using information retrieval techniques. In
Proceedings of the 1999 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pages 541–544, Piscataway, NJ, USA,
March 1999. IEEE.

[57] Sven Martin, Jörg Liermann, and Hermann Ney. Algorithms for bigram and
trigram word clustering. In Proceedings of the 4th European Conference on
Speech Communication and Technology (EUROSPEECH), pages 1253–1256.
ISCA, September 1995.

[58] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm
and Extensions. Wiley series in probability and statistics. Wiley, Hoboken,
NJ, second edition, 2008.

[59] Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. Coherent dialogue
with attention-based language models. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence, Palo Alto, CA, USA, February 2017.
AAAI.

[60] Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient es-
timation of word representations in vector space. In Proceedings of the
International Conference on Learning Representations (ICLR) Workshops,
May 2013.

104

References

[61] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev
Khudanpur. Recurrent neural network based language model. In Proceedings
of the 11th Annual Conference of the International Speech Communication
Association (INTERSPEECH), pages 1045–1048. ISCA, September 2010.

[62] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černocký, and Sanjeev
Khudanpur. Extensions of recurrent neural network language model. In
Proceedings of the 2011 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pages 5528–5531, Piscataway, NJ, USA,
May 2011. IEEE.

[63] Tomáš Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 3111–3119. Curran Associates, Inc., Red Hook, NY, USA, 2013.

[64] Tomáš Mikolov, Scott Wen tau Yih, and Geoffrey Zweig. Linguistic regulari-
ties in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (NAACL HLT), pages
746–751, Stroudsburg, PA, USA, June 2013. Association for Computational
Linguistics.

[65] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training
neural probabilistic language models. In John Langford and Joelle Pineau,
editors, Proceedings of the 29th International Conference on Machine Learn-
ing (ICML), pages 1751–1758, New York, NY, USA, July 2012. Omnipress.

[66] Robert C. Moore and William Lewis. Intelligent selection of language model
training data. In Proceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL) Conference Short Papers, pages
220–224, Stroudsburg, PA, USA, July 2010. Association for Computational
Linguistics.

[67] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network
language model. In Robert G. Cowell and Zoubin Ghahramani, editors,
Proceedings of the 10th International Workshop on Artificial Intelligence
and Statistics (AISTATS), pages 246–252, New Jersey, USA, January 2005.
Society for Artificial Intelligence and Statistics.

[68] A. Nádas. A decision theorectic formulation of a training problem in speech
recognition and a comparison of training by unconditional versus conditional
maximum likelihood. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 31(4):814–817, August 1983.

[69] Yurii Nesterov. A method of solving a convex programming problem with
convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[70] Franz Josef Och. Maximum-Likelihood-Schätzung von Wortkategorien mit
Verfahren der kombinatorischen Optimierung. Studienarbeit, Friedrich-
Alexander-Universität Erlangen-Nürnburg, Erlangen, Germany, 1995.

[71] D. S. Pallett. A look at NIST’s benchmark ASR tests: past, present, and
future. In Proceedings of the 2003 IEEE Workshop on Automatic Speech

105

References

Recognition and Understanding (ASRU), pages 483–488. IEEE, Novem-
ber/December 2003.

[72] Junho Park, Xunying Liu, Mark J. F. Gales, and Philip C. Woodland. Im-
proved neural network based language modelling and adaptation. In Pro-
ceedings of the 11th Annual Conference of the International Speech Commu-
nication Association (INTERSPEECH), pages 1041–1044. ISCA, September
2010.

[73] Razvan Pascanu, Tomáš Mikolov, and Yoshua Bengio. On the difficulty
of training recurrent neural networks. In Sanjoy Dasgupta and David
McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 1310–1318. PMLR, June 2013.

[74] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukáš Burget, Ondrej Glem-
bek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely. The Kaldi speech
recognition toolkit. In 2011 IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU) Demonstration Session. IEEE Signal Processing
Society, December 2011.

[75] Janne Pylkkönen. Investigations on discriminative training in large scale
acoustic model estimation. In Proceedings of the 10th Annual Conference
of the International Speech Communication Association (INTERSPEECH),
pages 220–223. ISCA, September 2009.

[76] Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language
Ambiguity Resolution. PhD thesis, Philadelphia, PA, USA, March 1998.

[77] Jorma Rissanen. Modeling by shortest data description. Automatica,
14(5):465–471, September 1978.

[78] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, November 1997.

[79] Holger Schwenk and Jean-Luc Gauvain. Training neural network language
models on very large corpora. In Proceedings of the 2005 Human Language
Technology Conference and Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP), pages 201–208, Stroudsburg, PA, USA,
October 2005. Association for Computational Linguistics.

[80] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription
using context-dependent deep neural networks. In Proceedings of the 12th
Annual Conference of the International Speech Communication Association
(INTERSPEECH), pages 437–440. ISCA, August 2011.

[81] Abhinav Sethy, Stanley F. Chen, Ebru Arisoy, and Bhuvana Ramabhadran.
Unnormalized exponential and neural network language models. In Proceed-
ings of the 2015 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 5416–5420, Piscataway, NJ, USA, April
2015. IEEE.

[82] Abhinav Sethy, Panayiotis G. Georgiou, and Shrikanth Narayanan. Text
data acquisition for domain-specific language models. In Proceedings of the
2006 Conference on Empirical Methods in Natural Language Processing

106

References

(EMNLP), pages 382–389, Stroudsburg, PA, USA, July 2006. Association for
Computational Linguistics.

[83] Y. Shi, W. Q. Zhang, M. Cai, and J. Liu. Variance regularization of RNNLM for
speech recognition. In Proceedings of the 2014 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pages 4893–4897,
Piscataway, NJ, USA, May 2014. IEEE.

[84] Vesa Siivola, Teemu Hirsimäki, Mathias Creutz, and Mikko Kurimo. Un-
limited vocabulary speech recognition based on morphs discovered in an
unsupervised manner. In Proceedings of the 8th European Conference on
Speech Communication and Technology (EUROSPEECH), pages 2293–2296.
ISCA, September 2003.

[85] Vesa Siivola and Bryan L. Pellom. Growing an n-gram language model. In
Proceedings of the 9th European Conference on Speech Communication and
Technology (INTERSPEECH – EUROSPEECH), pages 1309–1312. ISCA,
September 2005.

[86] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Master-
ing the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, January 2016.

[87] Rupesh K Srivastava, Klaus Greff, and Juergen Schmidhuber. Training very
deep networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28,
pages 2377–2385. Curran Associates, Inc., Red Hook, NY, USA, 2015.

[88] Andreas Stolcke. Entropy-based pruning of backoff language models. In Pro-
ceedings of the Broadcast News Transcription and Understanding Workshop,
pages 270–274. Morgan Kaufmann Publishers, February 1998.

[89] Andreas Stolcke. SRILM — an extensible language modeling toolkit. In Pro-
ceedings of the 7th International Conference on Spoken Language Processing
(ICSLP), pages 901–904, September 2002.

[90] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lattice decoding and
rescoring with long-span neural network language models. In Proceedings
of the 15th Annual Conference of the International Speech Communication
Association (INTERSPEECH), pages 661–665. ISCA, September 2014.

[91] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 3104–3112. Curran Associates, Inc., Red Hook,
NY, USA, 2014.

[92] Matti Varjokallio, Mikko Kurimo, and Sami Virpioja. Learning a subword
vocabulary based on unigram likelihood. In Proceedings of the 2013 IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU),
December 2013.

107

References

[93] V.M. Velichko and N.G. Zagoruyko. Automatic recognition of 200 words.
International Journal of Man-Machine Studies, 2(3):223–234, July 1970.

[94] Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and Mikko Kurimo. Mor-
fessor 2.0: Python implementation and extensions for Morfessor Baseline.
Report 25/2013 in Aalto University publication series SCIENCE + TECH-
NOLOGY, Department of Signal Processing and Acoustics, Aalto University,
2013.

[95] Philip C. Woodland and Daniel Povey. Large scale discriminative training
of hidden Markov models for speech recognition. Compututer Speech and
Language, 16(1):25–47, January 2002.

[96] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer,
Andreas Stolcke, Dong Yu, and Geoffrey Zweig. Achieving human parity in
conversational speech recognition. Technical report, Microsoft Research Lab,
Redmond, WA, USA, February 2017.

[97] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. Comput-
ing Research Repository, abs/1212.5701, December 2012.

[98] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convo-
lutional networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Proceedings of the 13th European Conference on Com-
puter Vision (ECCV), pages 818–833, Cham, Switzerland, September 2014.
Springer International Publishing.

[99] Yizhe Zhang, Zhe Gan, and Lawrence Carin. Generating text via adversarial
training. In Proceedings of the NIPS Workshop on Adversarial Training,
December 2016.

108

Errata

Publication I

Equation 2 has incorrect signs in the final publication. The correct form is

−gi(X) + log
∑

j �=i exp(gj(X)).

Publication III

The Finnish NNLM models were based on subword units and the Estonian

on compound-split words, while few sentences in the published paper in

Section 3.4 erroneously claim the opposite.

Publication IV

Kneser–Ney smoothing was not used when training the class-based n-

gram models, because the class n-gram statistics were not suitable for

the Modified Kneser–Ney implementation. While this is not said in the

article, the effect of smoothing is not that significant in class-based models,

because the data is not as sparse.

Publication V

A highway network layer uses a separate bias bσ for its gate. The index

σ is missing from Equation 6 in the published paper. The correct form is

g(xt) = σ(Wσxt + bσ).

109

sah hceeps hsinniF fo noitingocer citamotuA
wol yrev dna ,sedaced rof depoleved neeb
ylraelc no deveihca neeb evah setar rorre

sa hcus ,hsinniF dradnats nekops
larutan fo noitingoceR .stsacdaorb swen

ehT .gnignellahc erom hcum si snoitasrevnoc
hsinniF ni desu si taht egaugnal

morf syaw ynam ni sreffid osla snoitasrevnoc
seriuqer noitingocer sti dna ,hsinniF dradnats

 .elbaliavanu neeb ylsuoiverp sah taht atad

hceeps citamotua spoleved siseht sihT
lanoitasrevnoc rof noitingocer

roF .noitcelloc atad morf gnitrats ,hsinniF
era txet fo stnuoma egral ,gniledom egaugnal

ot deretlfi dna ,tenretnI eht morf detcelloc
nA .elyts gnikaeps laiuqolloc eht hctam
ot desu dna dehsilbup si tes noitaulave

lanoitasrevnoc ni ssergorp eht kramhcneb
siseht ehT .noitingocer hceeps hsinniF

morf esira taht seitlucfifid ynam sesserdda
ni desu si taht yralubacov eht taht tcaf eht

yB .egral yrev si snoitasrevnoc hsinniF
laicfiitra gnisu egaugnal dna hceeps gniledom

ydaerla si taht ycarucca ,skrowten laruen
 .deveihca si snoitacilppa lacitcarp rof lufesu

-o
tl

a
A

D
D

2

5
/

 8
10

2

 +d
hajh

a*GM
FTSH

9 NBSI 3-7097-06-259-879)detnirp(
 NBSI 0-8097-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
scitsuocA dna gnissecorP langiS fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 i
vr

an
E

op
pe

S
 n

oi
ti

ng
oc

e
R

hc
ee

pS
 c

it
a

mo
tu

A
ro

f
hs

in
ni

F l
an

oi
ta

sr
ev

no
C

gn
il

ed
o

M
 y

ti
sr

ev
i

n
U

otl
a

A

 8102

 scitsuocA dna gnissecorP langiS fo tnemtrapeD

lanoitasrevnoC gniledoM
citamotuA rof hsinniF

 noitingoceR hceepS

 ivranE oppeS

ct−1 ct

s
(l)
t−1 s

(l)
t

s
(l−1)
t

×

0

1

Wf Wi

0

1

W

-1

1

Wo

0

1

×

+

-1

1

×

 LAROTCOD
 SNOITATRESSID

	Aalto_DD_2018_052_Enarvi_verkkoversio

